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Charge-spin separation and the spectral propertles of
Luttmger hqulds '

Iohannes Vo:t -
~ Institut Laua—Langevm, BP 156, 38042 Grenoble Cédex 9, France

Rece.ived 29 March 1993

Abstract. We compute the spectral function p{g, @) of the one-dimensional Luttinger model.
We discuss the distinct infiuences of charge—spin separation and of the anomalous dimensions
of the fermion operators and their evolution with correlation strength. Charge—spin separation
shows up in finite spectral weight at frequencics between v,q and ¥pg, where v, and v, are

" the velocities of spin and charge fluctuations, while spectral weight above v,q and below —v,g
is penerated by the hybridization of the Fermi surface at S-kp by interactions. There are non-
‘universal power-law singularities at these special frequencies. We discuss the consistency of
recent photoemission experiments on low-dimensional conductors with a Luttinger-liquid picture,

- which then would suggest very . strong long-range interactions, ¥ js pointed out that many-
paxucle correlation functions in principle exhibit similar singulasities, but they probc different
and complementary aspects of the Fenm-sulface interactions,

1. Introdnr.hon

There are fundamental differences between 1nteracung one-dxmensmnal {iD) fermion
systems and three-dimensional (3D) ones. In 3D, Fermi-liquid theory is based on the existence
.of quasiparticles evolving out of the electrons (holes) of a Fermi gas upon adiabatically
switching on interactions. They are in one-to-one correspondence with the bare particles
and, specifically, exhibit the same quanturn npumbers and obey Fermi-Dirac statistics. Fermi-
_liquid theory ‘describes the vicinity of the 3D Fermi surface, but the quasiparticles are
robust against small displacements away from the Fermi surface with a lifetime diverging
as T ~ (E — Eg)™%. Ideally, they dominate the single-particle spectral response with a sharp’
peak at @ = g(k) becoming broader as E — Ef increases. In addition to the quasiparticles,
there are bosonic collective. excitations such as charge or spin fluctuations contributing
incoherent background to the spectral function. Of course, there may be borderline cases
where the quasiparticle peak is weak and most of the spectral weight remdes in the incoherent -
parts.
In 1D, there are no quamparttcles in the vicinity of the Fermi surface and the excitations
are gapless bosonic collective modes involving charge and spin degrees of freedom [1].
They usually propagate with different velocities: an incoming electron decays in distinct
charge and spin excitations, which spatially separate with time. The quantum numbers
are reversed: charge e and spin 0, and spin 1/2 and charge 0, respectively (a situation
reminiscent of the solitons in polyacetylene [2]); hence the name charge—spin separation.
Correlation functions usually decay as nor-universal power laws as a function of x and 7
and show non-universal singularities as functions of g and w. All of these features have
dramatic consequences for the spectral properties of interacting 1D fermions, which are
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much less studied than those of the Fermi liquid and which are the subject of the present
paper.

All these features—absence of quasiparticles, charge-spin separation, power-law
correlations—are generic to 1D fermion systems but are particularly prominent in the exactly
solvable Luttinger model [3-6] whose ground state can be viewed as a gas of non-interacting
bosons. All its correlation functions can, in principle, be calculated exactly. Based on
case studies of Bethe ansatz solvable models [7], Haldane conjectured that this picture
remains true, at least in terms of renormalized bosons and up to perturbative corrections,
for the asymptotic low-energy properties of a much wider class of 1D models, and coined
the term ‘Luttinger liquid’ to describe the universal low-energy phenomenology of gapless
1D quantum systems [8]. There is an obvious analogy to the Fermi-gas and Fermi-liquid
pictures in higher dimensions as described above.

Haldane’s conjecture has been verified extensively for many iD lattice models by a
variety of methods. The parameters characterizing the Luttinger-liquid fixed point of Bethe
ansatz solvable models such as the 10 Hubbard model can be identified by comparing
quantities that are accessible by both methods [9] or via conformal invariance [10]. A
similar procedure has been applied in a numerical study of the 1D #—J model [11] but,
surprisingly, these parameters can even be extracted from variational wavefunctions [12].
Perturbative renormalization group theory allows either determination of the Luttinger-liquid
parameters or direct calculation of correlation functions [13].

The recent interest in Luttinger liquids is due, to a large extent, to Anderson’s
proposal that the normal-state properties of the high-7; superconductors could be described
by a hypothetical ‘tomographic’ Luttinger liquid [14,15]. Much of this discussion is
based on the spectral properties of the high-7, materials measured by angle-resolved
photoemission [16] and the anisotropic transport properties. A central issue there is charge—
spin separation. Theoretically, the possibility of Luttinger-liquid behaviour and charge-spin
separation in two dimensions is quite controversial [15,17, 18]. Observe, however, that a
variational wavefunction implementing Luttinger-liquid correlations currently produces the
best variational energy for the 2D t—J model {19]. On the other hand, the spectral response of
even the 1D Luttinger liquid, and, in particular, the manifestation of charge-spin separation
there, are only poorly understood.

Experimental evidence for Luttinger-liquid behaviour in quasi-ID systems has been
produced in various orgamic conductors and superconductors. In tetrathiafulvalene-
tetracyanoquinodimethane (TTF-TCNQ), for example, there are strong charge-density wave
(cpw) fluctuations at wavevector 4kg in addition to those at 2kr [20]—a fact that can
be explained only by assuming sizable Coulomb interactions [21]. Moreover, the optical
conductivity of TTF-TCNQ is strongly depressed at low frequencies in the normal state [22],
in a manner consistent with a single-particle psendogap, in the case when impurities and
phonons are sufficiently efficient in suppressing the ideal Luttinger model’s delta-function
conductivity. Mainly based on anomalous nuclear magnetic resonance (NMR) relaxation
behaviour, a strong case for Luttinger-liquid behaviour has been made for the normal
state of the organic superconductors based on tetramethyltetraselenafulvalene ((TMTSF).X,
X=PFg, Askg, ClOy, ..., ‘Bechgaard salts’) [23,24]. The normal-state properties of quasi-1D
inorganic CDOW materials are much less well understood.

Finally, most recently and synchronously with the present work, photoemission studies
have been performed on both some inorganic CDW materials [25-27] and the organic
superconductor (TMTSF)2PF [28]. These studies generally show an intriguing absence of
spectral weight at the Fermi surface and, in the angle-resolved experiments, no dispersive
low-energy feature reminiscent of quasiparticle peaks. It has been suggested [24,27,28]
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tthat this could be related to Luttinger-liquid correlations. . The similarity of the spectral
response is highly surprising given the great dissimilarity in the other physical properties of
- these two classes of materials. Since the results of the present paper are of direct reIevance
I shall comment on this issue in more detail below.
In this paper, I discuss in detail the spectral function of the Luttinger model and its
- energy-dependent density of states. I shall take care to separate the influences of charge—
spin separation and of the power-law correlations characteristic of 1D fermions, in the
spectral function. To this end, two important simplifications of the spinful Luttinger model
will be discussed: spinless fermions exhibiting power-law correlations but not charge-spin
separation; and a one-branch Luttinger model possessing charge—spin separation but no
anomalous fermion dimensions. In the next section, these models will be presented together
with an outline of the calculation of the single-particle Green function G(x, t}. The Fourier
transform to the spectral function p{g, @) and results will be presented in section 3, together
with asymptotic formulae for the real parts of the Green functions.
In section 4 we present new results on the energy-dependent density of states of the
Luttinger model and of a related model whose charge degrees of freedom are of the
Luttinger type but whose spin fluctuations are gapped. These results are a prerequisite
for the discussion of section 5, which addresses the possible connection between the present
findings and recent photoemission studies on quasi-1D materials. Section 6 will conclude the
paper with an investigation of the spectral properties of many-particle correlation functions,
which nicely complement the information extracted from single-particle properties. A brief
report of this work has appeared earlier [29] as well as mdependent pa:allel work by Meden
and Schénhammer [30]. :

2. Model Hamiltonians and Green functions in real space

The Luttinger model [3-5] describes 1D lefi- and right-moving fermions with linear
dispersion through the Hamiltonian o ‘

H=Hy+H+H R @19
where : ‘ - :
= = " wp(rk — kedc i cras 7 (2.15)
L rk,s )
Hy=+ Z[gzu(p)a .sf+gz_L(P)5 ~s102.5(P)P-s (=) @2.1¢)
. P, Sv .
Hy= 2 Z L8 (P)ds.e + g1 (Do) p”cp)p”« p): (2.1d)
) r,p..s's )
Here ¢}, creates a ferm:on with spin 5 and momenturn £ on the branch r = % of the

dispersion z,(k) = wvp(rk — kg) where vg is the Ferrm velocity, —o0 < & < oo and all
negative energy states are filled. .

It is remarkable that this model can be solved exactly even in the presence of the
" (charge- and spin-current-conserving) interactions H; and Hj with spin-dependent coupling
constants gop 1 (p) and gy, +(p} couphng the density operators

Prs(p) = Z(Crk.;.pscrks p,O(Ol ,.;,,Crkslﬂ)) o ’ . 7 (22)
p . o
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normal ordered (denoted for short by the symbol : ... :) because of the infinite ground-

state expectation value of the number operator ), ¢ ,kscm Asa consequence of the linear
dispersion the p,; obey boson commutation relations

[ors(p), Pr’,s"("P’)] = “ar,r‘as,s’ap,p‘rPL/(zx)- (2.3)
Introducing operators
v () = (UVDIort(P) £ £y (P)] _ @4

and interaction constants

giv(p) = en(p) £ 811(p)) _ C@25)

for charge (v = p, ‘+’ applies) and spin (v = o, *—" applies) fluctuations, H separates into
4 charge and spin part and can be written as 2 boson bilinear

TUgp

Ho=ZE 3 tn(pi-p): - (2.6)
- y=p.0 . .
. r,P
) |
=7 D ea(pvi(pyv-(-p) (2.6b)
U=g,0’ :
1 .
Hi=2 Y ga(p): e (=p) . (2.6c)
v=r:np.i:r R .

Equation (2.6) suggests the possibility for an exact solution via a Bogoliubov transformation
[5], but 4n equivalent solution has also been produced by diagrammatic methods [6] using
Ward identities.

There have been different cut-0ff procedures in the literature. An unambiguous one,
used throughout what follows, is to impose a cut-6ff A on the momentum ttansfer of the
interactions g(p) [8], producing momentum-dependent g;(p). The cut-off A must be kept
finité to ensure a normalizable ground state, although its value is without 1mportance A
comment is in order on the value$ g;(p = 0) appearing in later calculations. Generally, for
ari interaction '

Hint ='£'1"" 2 V&s’(P)Cz;p_sC;;!:..p,s'ck‘.s‘ck,s

ki'.p
5,5

the coupling constarits g;(p) are obtained by neglecting the dependence on & and &’ and
accounting for the antisymmeétry of the fermiion operators:

gt (p) = lim i 5[Vie(p) = VauCk o+ p — K801
gasy (p) = Jim L 31V (p) — Vaw(k+ p — KDl

In general, g;(0) will be finite. However; gq) = 0 implying that no non-trivial scattznng can
originate from this interaction. This is s:mply seen by crossing the legs in 2 diagrammatic
representation. Choosmg a ﬁmte g4y will only produce a renormalization of the single-
particle propergles such as v, and v, (below). Notice that g4 = 0 with g4 finite is fully
compatible with spin-rotation invariance.
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‘After diagonalization, we have frotn equattions (2.1) or (2.6)
. r - ) ’ - .
H=7 2w H@ERED: - 27

v=p,0
np

where the renormalized velocity of the collective excitations is given as .
- 0lp) = (06 + a0/ T — Lenn()/ T2 ey

For g41 # 0 we find v, # v, diaking apparent that chdrge and spin fluctustions
propagate with different velocities. Charge-spin separation is a manifest property of the
Luttinger model, equations (2.6), while in more réalistic theofies it is dynamically genérated
in the vicinity of the Fermi -surface afid holds for the asymptotic low-energy properties
[9, 10, 14,15,31]. In addition, there is 4 stiffness constant

Ko(p) = {[vr + gy () — g2 (D)} 5 + g (P) Fea? QY

governing the lofig-distancé decay of coprelauon functions. K, = 1 for Spin-rotatlon-
invariant problems The non-universal quantities #, and K, completely describe the physics
of the model. The Luttmger—hqutd hypdthesis postulates that renormalized v, and K, also
describe the asymptotic [ow-energy physics of mofe realistic 1D quantum systems provided
théy havé massles§ excitatioiis 7] and that, to fowest order, relations between différent
correlauon fun:;tlons exprcsscd in the (non—umversal) K, and v,, are univésal there:

Whilé our mair interest is targeted 4t the spinful Luttmger madel, equations (2. 1) and
(2 6), we shall alsor discuss two toy problems tO separate power-law correlations from
charge—-spm separation in the spectral fiinctions below. Spmlcss fermions can havé non-
tnvml exponents Ko 5 1 biit have only one veloctty vg If ¢ 82 = gm 0 the twa braiiches

. of the. Luti:mger model decoiiple. Then K, = Kz = 1, ie. thé same value as fof free

fermions. -The remammg 8y # 0 will However ytéld Yp FE Up, le. 2 mtmmal modéi for
charge—spm separatiofi. Even siich 4 smp“ilﬁed modél has physical relevance, e.g. for the
edge staté responsible for transport in the quantum Hall effect wheré the strong magnetic
field givés a definite clufahty to the particles and the spin degrees of freedom survivé under
certaifi circumstances [32} Moteover, it lids been conjectured that a related proBlem is
exactly solvable even on 4 lattice [33]. .

We wish to calculate tHe spectral functioh

pri(g, ) = —(1/7) Im G (kF +qotun A ()

where G.f; (ke +g, @ + p) is the thlnor_ transform of the réfardéd ﬁf_e_en functich
G G5 ) = —i0() ([rs (i), 5 (00)))- | | @11)

Yrr: (xt) déscribes femuons in real space, {..:, .. .} denotes the anticommutator, and ju is the
chemical potential. !!f,-_\- is reldted to the bosons v,(p) via Haldane s bosonizatiodi identity

(8]

SGrk . PR .
Yrs(E) = lii ‘%”%Uﬁs ( 5080 ~ 03 + 506 ) - Sq(x)]_}) 2.120)
(a éiriﬁiar expressmn was deﬂved in [34]) through bosonic phase ﬁelds o
o) = - 3 SRR ) () - N N A
p£0 +
. e . . 2_. o " B ) - j . .
6,0) = —fg 5 exp(allf2. ipx) v+ () = v (DI Ny = Nz ’—’Lf e

0 p
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~
U, is a fermionic ladder operator and N, are the § = 0 components of the density
operators.
Equation (2.11) is then evaluated as

L8() A+i(opt —rx)
R xX,t) = —1— ki —_—
G, (x ) 1 o exp(irkex) hm [a T ——

1 A? " (x - —x
n [A +i(v,t —rx)]V/2 ((A +iv,2)? +x2) + t— —t )] '

v=p,0
(2.13)

Here

v = (K + K71 —2)/8 ' (2.14)
with '

K,=HEmK,(p) and v =lmup).

Equation (2.13) agrees with Suzumura [35], and is exact to logarithimic accuracy, i.e. in
the power laws. Corrections of order exp(x ™', ¢~} depending on details of the interactions
have, however, been neglected. Notice that G(x, ) and thus all single-particle properties
depend only on the exponent y, and the velocities v,. The exponents y, mainly measure
the strength of the interaction but do not distinguish between atiraction and repulsion
(K, — K,,“ upon g2 —> —gz). A sets the scale for the crossover from free-fermion
behaviour for |x|, |¢| €« A to Luttinger-liquid decay in the opposite limit. The first factor
in square brackets is a consequence of accounting for the momentum dependence of v,(p)
and K,(p) and of vital importance for the correct behaviour of the spectral function at
large frequency and wavevector. In some casés, one may wish to work with approximate
expressions neglecting the p dependence of v, and K. There equation (2.13) reduces to

8(z) 1
(x 1) = _1_7;_ exp(irkex) Ilm [ H [ + i(wyt — rx)]V/2

v=p,0

‘ AZ bl x = —x
* ((A + ivut)2+x2) + ( t— —t )} (2.15)

This approximation has been employed frequently [29,30,36]. For spinless fermions,
G,’.",(x,t) can be obtained from (2.13) and (2.15) by replacing the o contributions by
another p contribution of the same structure, while the one-branch Luttinger liquid is simply
generated by setting y, = 0.

3. Results: G(k, w)
The principal problem remaining is the Fourier transformation of cquation (2.13),
GR,(k, @) = f dx f dtexp[—l(kx w)IGR (x,1).
I have failed to perform this transformation exactly for the generic model, equation (2.13).

Serious difficulties arise in the computation of the real parts (to be discussed in section 3.2)
and when more than two velocities are present. Progress is possible for the calculation of
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the spectral function, p,.(q, w) = —(1/7) Im GR (kr + g, © + 1), equation (2.10), using the
property

[GR (k )" = =GR (=k, —w). . - : ‘(3.1
* The spectral function obeys the sum rule
00 -
. f dep (g, o) =1 forallg - ' ’ (3.2)
—00 . N

. which has been verified for all the results presented below where not stated explicitly to
the contrary. Two important quantities can be derived directly from the specfral and time-
ordered Green function. The smgle-partxcle density of states

N(w) Z f o@e) (3.3)

behaves asymptotically (w — 0) as
N(w) ~ |wl®. : (3.4)
The momentum distribution function

k) =—iy f - dre G, (x,07) . R ER)

is derived, from the time-ordered Green function, and varies as

nkp +q) ~.3 — Crsgn(g)lg|* — Cog  for g < k. (3.6)
The exponent « characterizes all singlé—particle properties and is given by

& =207, + o). L e
1t has played an important role in the recent discussion about the Luttinger-liquid description
of 1D lattice models [7-10,31]. For the repulsive Hubbard mode] off half-filling, @ < 1/8
[71, where ¢ = 1/8 is reached for infinite /. More detailed calculations of these quantities
are reported below. Because of its key role in the past, & will be used throughout for
labelling the figures where we limit 'ourselvgs to the spin-rotation-invariant case y, = 0.
. 3.1. Spectral functions
We shall discuss, in order, spinless femﬁ'ons, the oné-Branch Luttinger model and the spinful

model to gain an understanding of the roles of anomalous dimensions and charge—spin
separation, respectively.
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3.1.1. Spinless Luttinger model. We begin with spinless fermions. The spinless Luttinger
model allows us to study the influence of the anomalous dimensions of fermions without
charge—spin separation. This problem has been considered previously in an approximate
manner by Luther and Peschel [36] based on equation (2.15). It is interesting to reconsider
this simple problem also because the crossover to the high-energy limit ¢ 3» A™' can
be studied in a fairly complete and detailed manner using the Green function (2.13). We
introduce new variables

s =ugt —rx s =uvgt +rx | (3.8)

and obtain, using (3.1),

; 1 o Sl .
pr(giw) = 8:rr%0 ry /_. . ds '/: . ds"cxp(mls) exp(iQs")

. [A+itees+oesy 1 A V7 A )W ( s — —§
x lim - - ; +1 ’
a—0 | o + i{aps + bps’} \A+is A+as § = =5

(39

where the following new quantities have been defined:
g=k—rkg Q1 =w/2v+rg/2 Q, = w/2v —rg/2
ap = 3(vg/vo + 1) by = 3(ve/vo — I).
vo and v are defined similar to equations (2.8), (2.9) and (2.14) by
up = [vf — (g2/27)"1'/*
Ko = [(2mvr — 82)/ Qs + g2)]'/* (3.10)
Yo=K+ K5'-2)

where these quantities have been taken at p = 0 and we have set g;(0) = 0: The integrand
in (3.9) has a branch eut jn each variable and a pole at o +1i{a@ps + brs’) = 0 whose location
depends on the other variable.

* In the approximation of constant velacity vg, vr does not appear, ag = 1 and b = 0,
and the integral over s* decouples. This is the problem considered by Luther and Peschel
[36], who evaluated that o(g, ) approximately for small g and w, but p.(g, w) can be
evaluated without further approximation as

prig, @) = mg(w + rveg)f(@ — rvegdy (}’o, Z—UO(&J + vorq))
A e A \ , (0= —o
X (2—_00(@ - vorq)) exp (——Et-;;(m - vgrq)) + ( 4——q )
for w #£0 ' : - (3.11a)
o:(g, ) = 8(& — vorg) for o =0 (3.115)

where (e, x) is the incomplete gamma function. :

Our regions of non-vanishing spectral weight and the exponents of divergence agree with
Luther and Peschel. Unlike Luther and Peschel [36], who find a decay as w‘? for large
frequencies, our spectral function decreases exponentially. For y = 0, in equation (3.9)
only the pole s = i survives and the s integral then produces the -function.
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This function has been described qualitati:\'fely before [29]. For g > 0, there is speciral
weight at & > vog with an onset as (w — vog)™™!, ie. a divergence for yp < 1, a cusp
singularity for 1 < 3 < 2, and a smooth onset for ¥ > 2. At negative frequencies there

-is weight below @ = —uvpg with an onset as (—w — vpg)®. This is appreciable only at .

small momenta gA < 1, and exponentially suppressed for larger g, of equation (3.11).
Apart from the transfer-of this spectral weight from negative to positive frequencies asqis
increased, the positive frequency part is scale-invariant and disperses with vgg. For ¢ = =0,
i.e. k = kg, the divergence changes and o (0, @) ~ [w[>»~1. These features are illustrated in
figures 1-3. Figure 1 displays o(0, @) for various values of & = 2yp. The change from a
divergence 1o a cusp singularity is obvious. Here and in the following, we have determined
o from & via equation (3.10) and we have chosen as units vg = 1, A = 1. Figare 2-displays
the asymmetric shape of p(g, w) for finite g, here ¢ = 0.1, and its evolution with @. The
asymptotic behaviour of equation (3.11a) is not always apparent here, especxally for the
larger . In fact, for o > 1, significant spectral weight resides at negative frequencies, which
is taken out of the positive frequency part somewhat behind the onset.. This is obvious from
the inset of figure 2 where the region @ ~ vpg for & =3 has been blown up. Althéugh not
apparent on the full scale, the asymptotic prediction p ~ (@ —vog)"/? of equation (3.11a) is
satisfied. At higher g, the spectral weight at negative frequencies decreases exponentially,
* changing somewhat the shape of the @ > Q part. This is seen in figure 3 where ¢ = 0.5
and we only show the positive frequency part. Also the asymptotic behaviour for @ =~ vyg
is much more prominent, confirming that it is masked by transfers of spectral weight to
w < 0 as'g — 0. Figure 4 finally shows the dispersion with ¢ of the spectral function for
a = 0.125. The large values of & in figures 1-3 may appear of purely academic interest in
view of the limitation o: < 1/8 for the Hubbard model. However, ﬂperimenis [24,28] do
suggest values of @ in'excess of unity and it is important to study the evolution of p(g, w)
in this regime. We only show figures for ¢ > 0, where w < 0 corresponds to photoemission
* and @ > 0 to inverse photoexmss;on For q < 0, the spectral function is obtained by simple
 reflection at o = 0 from that at ¢ > O

The spectral weight at posmve frequencies corresponds to the creation of a particle above
the Fermi sea {cz.1q, s(r)c,q, +q P,(O)) ‘with ¢ > 0 while the response at negative frequenc:es
comes from the hole creation above the Fermi sea (ck -, 3(0)%4,4,;(1‘)} This process is not
allowed in a free Fermi gas but occurs here due to the finite number of partlclcs excited above
kg in the ground state by the interaction gs. This.is most easily seen from the momenturn
distribution function n(k), equation (3.5), which is finite for g > 0. The asymmietry _of the
‘spectral response is due 1o the small number of particles excited above kg in the ground
state. The spread in spectral weight is caused by the g, interaction allowing an incoming
partlcle to evaporate an arbitrary Aumber of particle-hole pairs on the opposne branch (as
in the x-tay edge problem).
 The relevant processes aré depicted schemat!cally in figure 5. Consider the Lehmann
: representauon :

ok, w) = e<w)p+(k, ©)+ e(~w)p—'(k, ~w) ' (3.12a)
with |

) =2 Y PR — ) - @3.12b)

o) =2 S W) el P8~y (3.120)
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Figure 1. Spectral function o(0, @) at the Fermi Figure 2. Spectral functon p(g,w) of the spinless

wavevector for different values of . This plot is  Luttinger liguid for ¢ = 0.1 and various . Here and

equally valid for the spinfess and spinfol Luttinger in all following figutes, units ae chesen as A = 1

Higuid. and vp = 1. The inset shows the asymptotic behaviour
close to the onset of spectral weight for & = 3 to be
in agreement with the prediction of eguation (3.11),
althongh this is not apparent on the scale of the
main figure. This figure, as well as figwes 3 and 4,
use the approximation of constant renormalized charge
velocity. The relation between the ¢ values in the
figures and the velocities is that for the Luttinger model
and the procedure for conversion is explained in the
text.

in obvious notation [37]. In figure 5(a) in step (1) an electron is injected into the system
with wavevector kr + g. Ha, equation (2.65), generates a particle-hole excitation with
p > 0 on both sides of the Fermi surface, giving an energy

e = yg 4+ 2up > vg (3.13)

after step (2). In figure 5(b), the particle-hole excitations are created first in order to have
electrons above kg. In step (2), one of these electrons is ejected, i.e. a hole is added to the
system. Then '

¥l =2up—vg > vg (3.14)

since the particles excited in (1) must come from below the Fermi surface, i.e. p 2 q. This
produces spectral weight for @ < —vg since we have o~ (k, —w) in (3.12). Similarly, the
injected particle in figure 5(a) can be relaxed by a particle-hole excitation with p < 0if one
had excited particles in the system before the arrival of the fest particle. These processes
also contribute to the part at w > vgg.

The main shortcoming of equation (3.11) is the inadequate description of the higher-
energy properties of the model. It seems natural to expect the spectral response to be
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Figure 5. Sketch of the mechanism for the generation of spectral weight by hybridization of the
Fermi surfaces via g2 at positive frequencies (a) and negative frequencies (b), cf text. Event
(1) occurs before event (2). ' ) ’

determined by vrg at values of ¢ 3> A™! instead of vog in (3.11), and naively one would
expect p(g, w) to become a s-function as ¢ — oo and interactions become unimportant.
To remedy this problem, one must treat correctly the short-range properties of the model
-and prefer the Green function (2.13) to the approximate one (2.15), simplified, of course,
to spiniess fermions. We then have to evaluate the full integral (3.9). The p(g, w) can be
decomposed into three terms:
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1=y S\
o01(g, w) = - A.f dsexp(lsﬂl)(l—i- ) f ds’exp(ls’ﬂz)(l-l- )

+ (21 = —01, 2 = —822)
_ A 0(Q)I(E)
209 T ()T (1 + o)
F (€ = -2y, 2 > —0). (3.15)
Here the pole in equation (2.4) is cancelled by the vahishing residue i(aps + bps’) % (...)

in the numerator and only the branch cuts contribute. There is 2 finite residue of the pole
from the remaining term in the numerator

(AS)P (AR expl—A(Q + Q)]

(g, w) 9(%) dsex {is[§2) — {ap/be)2]} 1+ o (1 - 1_a£s_ o
PR @) = riobe ] PUSLIE T AR/ORES A brb.
+(Q1 = —§4, 2 & —). (3.16)
Finally there is the contribution from the integral along the s’ cut:
030, ) = a2 (7 Q) DV oxp(~AR/2)

4 vebel (Vo)

—1y
X j;u ds expfis[$1 — (ap/br) S0} (1 + A)

=(wt1)/2
ags . GpS
(1 - IbFA) W(?D—l)f2.—?0/2 [AQQ, (1 i A)]

+ (8 = —84, S = ~£2) (3.17)

where W, , (z) is Whittaker’s function [38]. This function can be represented as a sum of
two confluent hypergeometric functions [39]f, one of which reduces to an exponential and
cancels pa2(g, w). For the remainder of p3{g, @), we use an integral representation [40] for
the confluent hypergeometric function to obtain

AO(Q)
2vpbsl" ()T (1 + yo)

1 N\ .
X fo d: @ (szl - -Z—Zﬂzt) [A (Q, - %—Eﬂgt)] (1—pr!

X exp{AQa (1 + a/be)t] + (€2 = =82y, Q3 — —2)

AG(Q) (M) exp[—A () + )] [ (Q __Q) .
B 2upbeT (Yo)I'(1 + v0) X },.09 1= 32 (AQq)

aESh
X ( Yo,1+}fo,b o A92(1+~g§))
+ -—-—9(91)9 ( S — szl) (bzgl) (AQP

be2
><¢1(1, — Y0, 24 Yoi — X A91(1+§))]

+ (821 = =8, = —£2). o (3.18)

P24, @) + pag, @) = (AQ)" exp[—A(Q + Q)]

1 Formulae in Gradshteyn and Ryzhik [39] will be abbreviated as GR x - yyy, 2.
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GR 3.385 has been used in the last equality and la, b, c; x y) is the confluent
hypergeometric function of two variables, GR 9.26. '

The part ;1(g, w) is quite similar in structure to the spectral function (3. 11) and, in
fact, is the dominant’ contnbutlon for small ¢ with an’ onset at positive frequencies at voq
with exponent yp — 1 and a weaker singularity (exponent yp) at & < —vpg. The important
difference lies in the exponcntlal factor exp(—Aca/vo) strongly suppressing contributions
from this term for gA > 1.

We tum to equation (3.18). The first term in the large square brackets contributes for
vog < w < vpg (if g > 0) with an onset as (@ — vgq_)“’ i.e. a weaker singularity than
p(g, w) for small g, and peaks at vgg. The second decays from @ = vgg on towards
higher w, implying a maximum at & = vgq. Since standard references [38, 39) do not give
much information on ¢1{a, b, c; x; y) we prefer a numerical evaluation of the integral in

- equation (3.18) for generating the following plots.

Figure 6 displays the positive ﬁequency parts of p(g,w) for ¢ = 0.125 and various 4.

Genencaﬂy, there is a double-peak structure with the two features located at w = vpgq and

= vpg. Figure 6(a) shows that, at small g, all spectral welght resides in the dwergence at
voq At large g the peak at vpg dominates. Figures 6(F) and (c) decompose the total spectral
function into p1{g, »), equation (3.15), and pa(g. w), standing for equation (3.18). The
~{gq, ) has a power-law divergence at @ = vpg whose amplitude is, however, suppressed
as expl(w + vog)A/2v] as g is increased. On the high frequency side of p; develops a
contribution from pz, which is peaked at w = vgq, ie. the unrenormalized dispersion. It
is apparent that as ¢ is increased spectral weight is transferred from the narrow peak at

= vgq into the broad bump between vpg and vpg while the response beyond vpq is very
weak. This peak sharpens as g increases but one does not recover a 5{w — vrg) signal as
g — oo; instead one forms an asymmetric structure at veg with a more gradual rise from
lower frequencies and an extremely sharp drop towards higher frequencies.

One may be surprised to find that spectral weight'is simply transferred, like in
communicating tubes, between features located at vpg (i.e. the ¢ — 0 limit of the dispersion)
and vpq (ie. its ¢ — oo limit) while the renormalized velocity vo(p) of the bosonms is

p-dependent through g2(p). It is tempting to associate the loss of any p dependence
interpolating between vpg and vgg to our evaluation of the Green function, equatmn (2.13),
to logarithmic accuracy (in the exponentials) where the results are independent of the exphcxt
p dependence of g;(p). On the other hand, an evaluation beyond logarithmic terms using
very special p dependences of g, produces a similar double-peak response [41], suggesting

- that there is little contribution to the fermionic properties from such non-universal terms.

Figure 7 finally shows the positive frequency part of p(g, w) foree = 0.5 (@) and @ =3
(). The bigger difference vg — vp for larger o makes the double-peak structure in o and
the shift of spectral weight with g between both peaks already quite apparent at o = (.5,
The evolution with ¢ is also very interesting. As « increases to produce a cusp-like (or
even flat) onset, e.g. o = 3, the maximum of spectral weight is pushed up a finite distance
from the onset vgg. For ¢ < 1, the maximum in figure 7(%) is at @ ~ 0.3 independent of
g so long as ¢ < 1. Only for g 3> 1, when the vpg peak dominates the spectrum does the
maximum start dlspersmg

3.1.2. One-branch Luttinger model. The second toy problem we consider is the spin-1/2
one-branch Luttinger liquid, g2, = g2 = 0. For ga # 0, v, # v, and this model exhibits
charge—spin separation. The comelation function exponents K, = 1 are, however, those of
free fermions. ‘The Green function is directly obtained from equations (2.13) or (2.15) by
setting ¥, = 0. In the approximation (2.15) where only the renormalized velocities appear,
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the spectral function is
8w — verg)8(Vorg — @) + 8(vsrg — w)8(w — Yyry)
7(|lw — vergllo — vprg)/?

pq, w) = (3.19)
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8320 J Voit

which has been discussed previously [6,291 and is not replotted here.

A calculation including the crossover to the comect high-(g,®) limit is, however,
possible starting from (2.13). It closely parallels the one outlined above for spinless
fermions, and we obtain

p(g, w) = p1(g, w) + pa(q, ®)

with
_ A expl-A®s +99) B
p1(,0) = 0@ o SN + (@5 05,24 —0) (2D
and _ -
2 £
p(g. @) = 9(93)9(94)—Um ( ) | _
1 3 Cp94 CF
[9 (Qg — —-94) (o2} ( X 2 dpﬂ ; Af2s (1 + d_F))
dp S 13 def3 &
+ 9 ( 94 - 93) _¢1 ( 21 51 CF94’ AQ3 (1 + dp))]
+ (823 = =8, 94 — —94) : (3.21)
‘We have deﬁned )
=(w-— Uprg)/(‘-’.o — Ug) 824 = (vprg ~— @)/ (vp — ¥g) (3.22)
cr = (Ur — Ug)/(Vp — Vo) dr = (v, — vE) /(v — vs). ’

For the model defined by equation (2.1) ¢g = dr = 1/2, but in a more general situation
[32,33] they may be different. Whenever an ordering of v, and v, was necessary, we have
chosen v, > v, corresponding to repulsive interactions (we shall make the same choice
for the full problem below). For attractive interactions, the role of v, and v, is reversed.
The p (g, @) is quite similar to the earlier result (3.19) apart from an additional exponential
factor suppressing its contribution at high q. More interesting is, in fact, po(g,®). This
function behaves like (@ — v,g)}'/? close to the borders of the region of spectral response
but exhibits a logarithmic singularity at @ = vpg in its centre. In figure 8(a) we show
plg, @) forg = 0.5 and g4y = 0.5 and its decomposition into p; and p,. For the same g4,
figure 8(b) displays the dispersion of p(g, @) with ¢. It is apparent that, in a way similar
to the spinless fermion case, spectral weight is transferred from the square-root divergences
into the log singularity as g is increased. For g = 5, the square-root divergence is no longer
visible and the singulatity at vpg contains the full spectral weight.

The inverse square-root singularities at the spin and charge fluctuation dispersions
collapse into a §(w) peak as g — 0. This implies a momentum distribution function

nik) = 6(ks — k) (3.23)

in agreement with Luttinger’s theorem [42] and would suggest a Fermi-liquid picture. It
is clear, however, from the dispersion of the shape of the spectral function with g, that
the physical picture must be radicaily different and that the notion of a quasiparticle does
not make sense. The incident electron decays into a multiple charge (resp. spin) carrying
particle—hole fluctuation on the same side of the Fermi surface. There is no spectral weight
at negative energies because there are no particles present in the ground state above kg.

The preceding discussion demonstrates that n(k), and, more generaily, any physical
quantity depending on k or & alone, is insensitive to the effects of charge—-spin separation
and is dominated by the power laws generated by the anomalous dimensions of the fermion
operators. Charge—-spin separation is visible only in the full g- and w-dependent dynamical
correlation functions. Quantities depending on ¢ or w alone can only probe the power-law
correlations. _
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3.1.3. Spinful Luttinger model. We are now in a position to discuss the spectral properties of
the spinful Luttinger liquid, described by the Green function (2.13). This problem involves
three velocities (vg, v, and v,) and is extremely difficult to solve. We shall therefore discuss
the approximate Greén function (2.15) where vr does not appear and v, and v, govem the
- dynamics of the charge and spin fluctuations over all energy scales.

From the previous discussion, we would expect power-law singularities at w = Fv,g
and a region of zero spectral weight between tv,g (for v, < v,). The latter is determined by
the analytic properties of G(x, t}, which become most prominent upon introducing separate
coordinates for right- and left-moving fluctuations of the typc with the smallest velocny _
(here spin fluctuations):

§=Ust—rx 5= v,,r +rx : (3.24)
producing . ' '
L AZH [ oo .
prigr, @) = = f_ 'm ds f_ - ds'r exp(iQis)rexp(iS_Zzs_’)‘

o

x [(@-His) (A -+is) 7 (A+is) 7 (-Fiaps Fib,s') " V2(A +iays +ib,s) 7
X (A +iaps’ +ibps) ¥ + (s = —s,5" = —s)] - (3.25)
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with the definitions
Q =w/(2u,) +rg-/2 Q2 =w/(v) —rg /2
= ('Up + va)/(2vs) by = (v — U5/ (2Vs).
Both the 5 and s’ integrands have non-analyticities (branch cuts) only in the complex upper
half-plane, implying that spectral response is limited to ©; > 0 and Q5 > 0, ie. @ > vgq.
The term produced by inverting s and s* yields a contribution only for w < —v,q. Also

the asymptotic behaviour close to @ = Tv,g is quite apparent: one has £2; ~ 0, £2; finite
(resp. the opposite) and obtains from power counting

(3.26)

2r(q, ® 22 v.g) ~ Koo — Vg w — v,q)*reTre—1/2 oz
Pr(d, © 2 —v59) ~ 6(~0 — v5q)(—0 — voq)* . '

The second line applies only for y, > 0; for ¥, = 0, spectral weight appears only at
@ = —u,q (keep s as above but use ' = v,¢ + rx to see this). The divergences at

= tkw,q are best seen by going to new variables £ and &’ obtained from (3.19) by
replacmg Vs = V,. Then we find

Pr(gs @ 22 v,g) ~ | — upg |12

(3.28)
pr(g, @ ™2 —v,q) ~ |@ — vogq e,

These exponents agree with [30] and reduce, for y; = O (spin-rotation invariance), to
those given earlier [29]. Equations (3.27) and (3.28) are quite different from the proposal
by Anderscn and Ren [14]. Their function has the correct regions of spectral weight at
positive frequencies, but they give an exponent « = 2y, instead of 2y, — 1/2 for the onset
at @ = vyq and completely miss the divergence at v,g. Moreover their pole at w = —v,¢
turns into an (—w — vg)” singularity here.

For y, = 0, a full calculation of the spectral function is possible with one major
approximation: some integrals become solvable only upon replacing ¢ in (3.25) by the
cut-off A. This will modify the spectral function at higher energies and wavevectors and
thereby violate the sum mile (3.2). (Roughly speaking for fixed w, a factor exp(—lg|A)
is introduced into the speciral function. This is best seen by comparing equation (3.11)
to (3.15): applying in the present approximation to (3.11) will precisely produce (3.15)!).
The results to be shown below are therefore restricted to very small values of g and @
where the approximation does not affect the results in an important way. The details of
this calculation have meanwhile been published by my competitors [30] and I shall not
reproduce them here.

Figure 9 shows the dispersion with g of the spectral function for & = 0.125 (i.e. the
o of the U = co Hubbard model). As before we determined g41 = g2, = g2 from «
via K, (equation (2.9)) putting X, = 1 (spin-rotation invariance) and injected them into
equation (2.8). It is apparent that the spectral function carries features both from the spinless
fermion function (synonymous with ‘anomalous fermion dimensions’) and from the one-
branch problem (synonymous with ‘charge—spin separation’). The picture is, however, far
more complicated than a simple addition of these two problems and, to some extent, multiple
crossovers can take place between regimes where one or the other feature is prominent.

If g is very small (say g = 0.001), on the scale of the figure, p{(g,w) resembles
pretty much the spinless fermion function. The separation of spin and charge at positive
frequencies is not resolved at the scale of the plot but can, of course, be visualized by
using a different scale. There is also a negative frequency contribution of deceptively small
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ampli'tu_dc whose cusp exponent 1/16 can hardly be distinguished from an edge discontinuity.
- As g is increased, charge and spin fluctuations respond at visibly different frequercies. Also
. apparent is the slightly larger exponent in the divergence at the charge excitation energy: the
curve is slightly asymmetric and the peaks have larger amplitude at v,g as compared to vgg.
-*Although the actual peak height is determined by the matching of v,g with the w grid used
in the plot, it is systematically higher at v,g for all g. As g increases, the weight at negative
frequencies decreases exponentially and would hardly be visible in figure 9 for g = 0.025
and 0.075. It is also manifest from figure 9 that, at these small values of & and at not too
small g, the spectral function is more similar to that of the one-branch problem than to those
of the spinless fermions. The exponent at v, g in figure 8 is —3/8 and at v,q —7/16 instead
of —1/2 in the one-branch Luttinger liquid. In other words, for small correlation strength
e, the charge—spin separation is the dominant feature in the single-particle propetties of the
Luttinger model (this may be different if v, and v, are allowed to vary freely and when
their difference is not too important). Thinking about experiments where a fixed resolution
is imposed, figure 9 suggests that the double-peak structure characteristic of charge—st
separation is only resolved beyond a critical momenturn.
Figure 10 shows the evolution of the spectral function as « ‘is increased. For &k = kg
"we have again (0, w) ~ |w|*"!, and plots are quite similar to figure 1. As ¢ is increased
beyond unity, spectral weight is pushed far away from the Fermi surface. The same trend
occurs at finite wavevector. Figure 10(a) displays the behaviour at rather small o for
.g = 0.05. The negative frequency part is very small and not shown. The spectral weight
is mainly concentrated between v, g and v,g, and the difference in exponents of the two
divergences is amplified as o increases. For & = 0.5, one has an edge discontinuity at v,q
in agreement with (3.27), while close to v,q, p ~ | — v,q|”*. As one goes towards
higher o, figure 10(p), the behaviour close to ;g evolves into a cusp and finally into a
flat onset, while close to v,g, an upward cusp emerges for & > 1, and precisely at ¢ = 1,
one recovers a logarithmic divergence. For o > 1, a maximum appears in p(g, @) at high
@ (0.3 to 1 in units of A/vg) outside the range of figure 10(#). Moreover the contribution
at @ < 0 rises to become a sizable fraction of the one at @ > 0. The differences to the
Anderson-Ren predictions are readily visible. The evolution in figure 10 also demonstrates
that the violation of the sum rule generated by the apprommatlon above depends sensitively
upon .
Although we havc not yet been able to solve the general problem mcludmg the crossover
to the correct high-g limit of the dispersion, w = vgg, predictions can be made based on the
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Figure 10, Evolution with correlation strength o 6 the spectral function ¢(0.05, @) of the $pinful
Luttinger liguid. (a) “Weak’ comrelation regime where charge—spin separaticii is dominait. (&)
‘Strong’ correlation regime where the anomalous fermion dimension effects are dominant. The
o dependence of the sum-rule violation introduced by our approximation is also apparént.

presént results and the understanding of this crossover we obtained in the spinless fermion
and one-brarich cases. Generically, we expect a third inaximum in the spectral response at
teg. This maximum will not be very pronouriced at sméll ¢ and small & but will grow out of
the background as g and/for ¢ are increased. If « is small, it will be located between U, q and
v;4 and probably be quite similar to the oné-branch Luttinger liquid. I do not, However,
expéct a trué divergence at vyg. As w incréases, it should get more of the asyinmetric
edge-like structure of the spinless motel and rather appear on the high-w side of the v,q
divérgence. It is clear then that the signatures of charge-spin separation Will fade away as
one leaves thié neighbourhood of the Fermi siiiface but 6ne will not recover a 8-fuinction as
g ~¥ 0.

The mechanism of genetation of spectral weight in the preserice of charge—spm
separatlon is sketched in figare 11. In step (1), 2 partlcle constituted by 4 charge aitd a spin
part is absorbied by the system at wavevector g. Thé particle. decompbses into 4 charge
part with momentum ¢ — p and a spin part with momentum g + p, with —g < p < q.
Following the reasoning of equations (3.12) dnd (3.13); the energy e¥*+! will becoine

e’ = 3l0lg = )+ vl + P - (3.290)
and be limited to

rg < ey < v,g. ' (3.295)

This gives the spread of spcctral weight due to cha:ge—spm separation, ice. all oné has in
the oné-branch Luttinger liquid, equatxon (3.19). The g4 scattering cannot change s” . In
step (%), partlcle-hole excitations in the charge channel (we assume g, # 0, g2 = 0) wﬂl
boost the energy of the charge part of the particle similar to the spmless férmion problem,
producing a spread in spectial weight beyond @ = v,q. The processes for generation of
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Figure 11, Sketch of the process at the origin of the

_ spread in spectral weight in the presence of charge—spin
separation. Event (1) (decoinposition. of an incoming
particle-hole composite intd its constituents) occurs
.before (2) and is the only one occurring in the one-
branch problem. The spread of weight beyond b4 in
) mvolves excitations on both branches.

weight at negatwe frequenmes are then simply obtained by transforming the electron into a
hole and inverting the order of steps (1) and (2).

Returniing to the discussion of charge-spin separatiofi, versus a.nomalous fermion
dimensiofis, figure 10(a) demotistrates that charge—spin separation is the dominant feature
at small & and that spectral weight is mainly concentrated between v,q and v,g. As the

_divergences disappear upon increasing ¢; an important tranfer of speciral weight far away
" from the énergies of the ejected (absorbed) particles (resp. - their constituents) sets in and
the aspects related to the anomalous ferriion dimensions become proiminent.

This suggests the following remark on the role of aniplitude and range of electron—

. electron interactions. As long as the intefactions are local (Hubbard model) the power-law

_ corrections to correlation functions are surprisingly weak rio matter what their amplitude is:
In fact, the U/ = ¢o Hubbard model has & = 0.125 and the infiuence of this exponent on the
single-particle properties (not fiecessarily the many-particlé correlation functions) is quite
neghg1b1e Dominant in the dynamic cérrelation functions is the charge—spin separatiod,
‘which amounts to splitting a pole into & branch cit with’ smgularmes of roughly half the
original degree of divergence at its ends--a dramatic modification of the Iow-energy physu:s" :
Only a finite interaction range allows the generation of really strong coerrelations in ap

_ intricate interplay of strength anhd range; and, ultimately, a Coulomb potential V(g) ~ 1/4>
will always be in the strong-coiipling liniit no matter what its amplitiide. In this case, strong
modifications of the physics dre generated by the correlations, and charge—spin separatién

* plays a relatively minor role. Notice, however; that, in all thesé more realistic models,

deviations from the asymptoti¢ Luttmger—hqmd spectral functions dlscussed here will oceut

for finite ¢ and .

3.2. Real parts of Green funcnons

Although the real parts of the Green fuuctlons are Sf less immediate relevance fof .
experiments, they are lmportant ina vanety of apphcanons that use the interacting Luttingef
model as a zeroth-order starting point in diagrammatic theories. -Ar analytic calculatiori
is not p0531b1c in general (except for the one-branch Luttinger liquid) and, for compiete
characterization, numerical procedures are required. A fairly detailed picture can also be
compdied from knowledge of the asymptotic behaviour of Re G{g, ») in the vicinity of
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@
Figure 12, Energy-dependent density of states N{w) of the Luttinger model for various e.
The inset displays the asymptotic low-frequency behaviour close to the Fermi energy. Only the
. negative frequency part is shown.

the points @ = *+v,q where Im G(g, @) behaves singularly. To this purpose we use the
Kramers—Kronig relations -
| = ImGRg,8)

1
ReGi(g,w)=—P [ df

= (3.30)

where P denotes the principal value of the integral.
For the one-branch Luttinger liquid, equation (3.30) can be solved, and the real part is
{(here and below, we assume the branch » =)

80 — U,9)0(@ ~ vsq)  O(usg — ©)8(v,q — )
(@ — vpq) (@ — vg)]'?  [(voq — @) (voq — w)]/2

ReG(g,w) = (3.31)

Close to a one-sided power-law singularity
plg, w) ~ 8 — vg)lw — vg" !
Re G(q, w) varies like |

Re G(g, ) ~ sgn(l — y) sgn{w — vg)|w — vql”'l -+ const. (3.32)
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If the. spectra] weight is to the other side of the divergence, say
2@, 0)=08(-0—vq)| -0 - vql” !
one obtains ’ L , _
Re G(g, @) ~ sgn(l — 1) sgn(w + vq)]m +vgl* ' +comst. . (3.33)
Finally, it is obvious from (3.32)-and (3.33) that close to a divergence from both sides '
p(g, @) ~ jo —vg[*™!

ReG(g, w) ~ sgn(l — y) sgn(w — vq)]w - vg|*~" + const. . (3.34)
Fmal[y, for'y =1, ie. a step in p(g, @), the real part becomes _ C
ReG(g, w) ~Inlw —vql. : . (335

For values of ¥ < 1, the divergence will dominate, but if ¥ increases beyond 1, one will
find a cusp set off from zero by a finite value. The sign of the singular part changes when
¥ Increases beyond 1, guaranteeing a smooth evolution of Re G(g, w) with y.

4. Derived quantities: momentum distribution aﬁd dénsity of states

Several physical propemes can be denved chrectiy from the Green function. Most zmportant-
are-the momentum distribution function :

n(k) = —1[ dxe"""G,.s(x 07) " | (4. 1)

where G, (x,07) is the txme—ordered Green funcuon, and the smcle—partxcle density of
states
=3[ Ly o - @2)
= )2 orig, w). : _ .

The asymptotic low-energy properties of these functions for the Luttinger model have been
discussed earlier [1,5,35,36,43); in view of the importance, in particular, of N{w), for
photoemission experiments, we shall recalculate them here and present some new results.
Moreover, we want to use the full expression (2.13) in order to ensure the correct physics
at higher energy scales. :

We. begin with n(k). Inscmng the (¥} part of (2. 13) into (4 2), nr, S(k) for spin s
and branch r is glvcn by

—1 dx A2 + X—z —¥p— .
7 s(k) [ wa—vx\ T Az ) _ -e)_{p[—-:(k — rkg)x] 7
® dx /A2 4 g2\ Ve - o
= l sgn(kp - rk) d_x_ +x ©osin(jrk - kelx) 4.3)
AZ

where the lumt o — 0 has been performcd in the second cquahty Usmg GR 3.773, 1 one
obtains finally '

1
nr,.s‘(k) g Sgn(kF - rk) [B(zv yp 4- Yo — "
X Alrk — kel 1F2(33 2 — v — Vo, 31 A1k — kpl?)

1/21"(‘ — Vo = Vo) ( k=& I)z(}’p+J’a)
(1 - v, + Yo) F

X 1Fy Vot Yor L+ Vo + Yo 3 + Vo + Vo3 32|k — k)] (44)




8328 J Voit

where B(x,S) is the beta function (GR 8.38) and ;F(e;b,c;2) 2 generalized
hypergeometric function (GR 9.14, 1). The asymptotic behaviour given in equation (3.6) is
apparent because | F5(d; b, ¢; 0} = 1 and (4.4) then deteimines explicitly the tonstants C;
and C; in (3.6).

The density of states

Vo =% [ oo | )

depends sensuwely on the use of the Green function (2.13) or (2.15), i.e. the treatment of
the high-energy physics outside the asymptotic regime || — 0. For the Green function
(2.15) we obtain for y, =0

1 . y@y, lwAfuD)

Niw) = 2(W,0a) 2 T2y

(4.6)

This functiSh increases monotonicilly with || and tends towards 1/ (v,v,)"2 as || -+ co.
This is different from and in genéral higher than the free-fermion density Of states 1/ vg,
indicating that the high-energy physics of the model has been altered by assuming constant
velocities v, for charge and spin fluctuations. If the correct Green function (2.13) is used,
one can take advantage of the pole in the first factor and-evaluate N(w) even for finite y,
as

FC e e e

N —_— i — A 2(}’;7‘3‘70‘)
0 = S [exp( olA/u) el

1 i i
x 1F ( + 2V, 1+ 2y + 2y5; (;- _ﬁv_) A[a)])

o 8

leo| ..
+ 5\— do’ exp(—[éb'IA/vp)[m’lzt”p""f“)
F Jo

x 1Fy (1-1-2}'6, 14 2¥, + 2ys; (—1~ —-1—) Alw’l)] @7
2 v, Ve ] .
An equivalent formula is contained in unpublished work by Schulz [44].

For low energies, the first term dominates and produces N(w) ~ |@{%, in agreement
with the asymptotic results of Luther and Peschel [36] and Suzumura [35], while for high
energies N(w) tends to the free-particle density of states 1/7vp. N(w) from equation (4.7)
for y, = 0 i displayed in figure 12 where we used the procedure discussed above for
generating the v, from . It is apparent that the spectral weight lost in the pseudogap
close to the Fermi surface reappears in a maXimum at finite frequency. This suggests the
existence of another sum rule for the Luttinger model translating 4 conservation of the total
spectral weight of the model in the presence of interactions. In fact, Suzumura [35] has

shown that
fu de (N(m) - —Jl'_'l;‘];") -—0 (4.8)

and our equation (4.7) obeys that rule. Upon close inspection, some curves in figure 12,
in particutar the one for & = 0.125, seem to violate this rule. There is, however, for small
o another shallow minimum in N (w) at higher energies {e.g. for & = 0.125 at @ ~ 3.5)
as can be checked by examining the derivative d¥ («)/dw. This minimum would not be
visible on the scale of figure 12.
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In the derivation of equation (4.8), Suzumura [35] explicitly uses the relal:lorns between
the velocmes v, and the coupling constants g; satisfied by the Luttmger model. Suzumura
discards &4 on account of the Pauli principle. Thls argument, in fact, only holds for a local
potential where g4)(p) is independent of p, and neglecting gay is not permm.ed in general
(the Luttmger mmodel i$ not even well defined for a 5(x) potenual) One can re-evaluate
(4.8) ifi the presence of ggy and find

n'Afo'odw-(N(w)— ! )=_ galp = 0). - 49)
0 TVUE .

2:rer

- Only gi(p 0) enters since the Green functlon (2.13) depends, to the (umversal)
logarithmic accuracy of equation (2.13), onIy on the gi(p = 0). We have given in
section 2 general arguments why ga(p = 0) should vanish, lmplymg that Suzumura’s
sum rule i is generally valid for the Luttinger model. If one should imposé finite g4||(p 0,
Equation (4. 9) seems to suggeést a renormalization of the chemical potentlal Since (4.8)
depends on the particular relations between velocities and coupling constants of the Luttinger
madel, it ieed not be satisfied by any more general model having a Luttmger—hqmd fixed

"pomt in that regime; and consequently the maximum of figure 12 need not appear there.

The phys1ca1 significance of the sum rule (4. 8) is more transparent upon mscrtmg 4.2)
and (2.10) mto (4.8). It then translates into

GR(x =0, tu0+)—GR(x—0t'£0+)= , - - {4.10)

i.e. the very-short-time behaviour of the exact interacting retarded Green function GR must
not be changed by the interactions with respect to the Green functlon of free elecl:rons
GR. This ensures that the hxgh—cncrgy physms of the model is treated comectly in G.
More fundamentally even, GR(x = = 0%) is related via (2.11) to the fermionic
anticommutator, and (4.8) then guarantees; that no important feature of the cancnical
transformation used to diagonalize (2.1) arid (2.6) has been lost in the further course of
calculation Very loosely speaking one could say that (4.8) ensures GR(O 0"') to be the
‘canonically transformed GR(0, 0F).
We finally want to discuss the density of states of a modified Luttmger quuld whose
charge degrees of freedom are massless-and described by the charge part of the Hathiltonian
2.0, rcsp (2.6), and thus by parameters K ,(y,) and v, but whose spin fluctuations are
massive with a gap A,—for reasons that wzll become obvious below when experiments
* are discussed. Formally; the system has a = oo then. Theoretically, sich a situation can
arise in a variety of models, €.g. the I/ < 0 Hubbard model [45], the attractive extended
Hubbard model [13], the Luther—Erilery solution of thé backscattering problem [46] as well
as for electrons interacting with acoustic [47] and intramolecular phonoris [48]. - '
The Green function G(x = 0,¢) for this problem canpot be calculated cxactly The
charge part of G is given by the charge parts of equations (2. 13) or (2.15). For the spin
_part, a realistic guess or approximation has to be made. For this purpose, we borrow
from the textbook example of a gapped many-body system, namely. superconductivity, the
diagonal parts of the Green function matrix ([37], equation (51.30)) and transform it into

I __ 23,172 .__.._ﬁm_ 7
Gk, ) = [B(t) expl—i(&} +Aa)r ](1+ n Az)m)

66D expl—i(&} + Aﬁ)tm] (1 - W)] . @i

with & = ve(rk —kg). The {cx()cf (0)) and (¢} (O)ex(2)) pieces are clearly separated here.
One must now multiply these pieces separately by the corresponding charge contributions
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in (2.13) or (2.15) to obtain the correct retarded Green function. We then interchange the
integrations over ¢ and & and perform the one over ¢ first with the result (up to constants)

N (@) ~ f " g Olw — (52 + AV

X exp (—Uﬁ[w — &+ Aﬁ)m]) [~ (2 + ALY12Pre—12
) ‘

1 1

X 1F (2,_2Yp+ >

where 1 Fi(a, b; ) is the confluent hypergeometric function [38]. It is clear that N(w) =0

for |w| < A,. This contradicts an earlier calculation [44], which finds a finite density of

states in the gap and even at w = 0. We believe that the difference is due to our multiplying

separately charge and spin in the particle and hole parts of the Green functions and building

the total Green function: out of these products, while Schulz apparently multiplies the charge
and spin functions.

Also interesting is the onset of N(w) close to A,. We find for the dominant term

N(w) ~ 8{jol — As)(lw| — Ag)*Ps. (4.13)

- @ Ai)“ﬁ]) > —a) *.12)
Jo- @

The typical (Jew]—A)~Y/? singularity of gapped 1D quantum systems, here present in the spin
sector, is completely wiped out by the remaining massless charge fluctuation through the
convolution of both parts in the density of states. Thus, in principle, the charge correlation
exponent can be determined from the onset of N{(w) near A,. Notice that y, 2 0 so that
one expects a step function for free charges and a weaker singularity as correlations in
the charge channel increase. The physical interpretation of the zero density of states for
|w| < Ag is most transparent in the I/ < 0 Hubbard model: the particles form bound singlet
pairs, and such pairs must be broken in a photoemission experiment requiring a minimum
energy Ag. ‘

Finally the half-filled 1D Hubbard model is symmetric under a simultaneous exchange
U < —U, p <+ o. Furthermore spin-rotation invariance requires for I/ > 0, y, = 0, so
that one would expect an edge discontinuity in N(w}) at the charge gap.

5. Photoemission experiments on one-dimensional materials

The results presenfed above should be directly relevant for photoemission experiments on
quasi-1D systems thought to be describable as Luttinger liquids. There has recently been
a series of experiments on organic and inorganic quasi-1D materials whose salient features
will be summarized in the following. We do not pretend to have elaborated a theory for
photoemission in these materials, but simply discuss to what extent they are consistent with
a Luitinger-liquid hypothesis.

The organic conductors and superconductors of the (TMTSF).X series (Bechgaard salts)
are prime candidates in this field. They are in general metallic down to quite low
temperature, where they undergo a spin-density wave (SDW) or superconductivity transition.
There is evidence for important repulsive interactions and sizable anisotropy in the electronic
properties. Moreover NMR experiments have already been aralysed in a Luttinger-liguid
picture [23,24].

A high-resolution photoemission experiment was recently performed on the system
with the counterion X=PFs [28] in its normal state at 50 K. The experiment had an



Spectral properties of Luttinger liguids 8331

excellent energy resolution but the angular resolution was less good, so that, in principle,
our predictions of section 3 have to be integrated over a finite k-domain in order to be
comparable with the experiment. In this situation, one would expect, loosely speaking, to
see the shape of the spectral weight near its onset more similar to that of N (w), figure 12, at
least on a frequency scale vpAk where Ak is the resolution, but the signal should disperse in
a manner indicative of the angle-resolved functions. The experiments could not detect any
signature of a Fermi edge (indicative of divergent response in the angle-resolved functions
0(g, @)). Only a broad prominent feature near —1 €V, i.e. at the very bottom of or even
outside the conduction band of (TMTSF),PFg, was detected. There was no d1sper51on of the
- measured signal upon varying the angles.

Similar behaviour is observed above the Peierls transition temperature in some inorganic
quasi-1D charge-density wave (CDW) materials such as (TaSes)2l [25,27] or Kg3MoOs
[25,26]; only in (TaSeys).l is a dispersive signal seen [27], which, however, fades away
as it approaches the Fermi energy. On the other hand, a clear signature of a Fermi edge is
visible in the more 2D system 1T-TaS; [49].

- Alternative models have been discussed in the original papers. Here we shall concentrate
on the possible (in-?)consistency with a Luttinger-liquid picture. We concentrate on the
Bechgaard salts. ' )

The experiments are manifestly inconsistent with the results of sections 3 and 4 if
one considers o valués for the Luttinger liquid appropriate for e.g. the Hubbard model,
o < 0.125. In the density of states one expects 2 pronounced pseudo-Fermi edge—the
‘|e3|® singularity will not be distinguishable from a step function in particular when thermal
broadening is included. Moroever, angle-resolved experiments should see two dispersing
peaks corresponding to energies v,g where the momentum transfer ¢ onto the chain is
varied with the angle. None of these properties are observed.

The experiments are more consistent, however, with our results if one assumes large
values of ¢ in excess of unity indicative of strong and long-range interactions. In this
case, the densify of states starts off the Fermi surface with a flat tangent and gradually
- rises towards lower energies. It exhibits 2 maximum at finite energies whose precise
location, however, cannot be determined within the model (it depends on the cut-off and
therefore requires a more complete theory—or unainbiguous experimental identification).
The possibility of shift of spectral weight over.significant energies is also borne out by
‘our calculations, although we cannot determine whether it appears inside or outside the
conduction band. However, an identification of the experimental maximum with the one
in figure 12 is certzinly not permitted for a variety of reasons: (i) The Luttinger-liquid
picture is likely to become irrelevant on energy scales of the order of the (real) bandwidth
- and more complete models must be used. (ii) Quantum-chemical calculations indicated the
" existence of molecular orbitals below the conduction band in this energy range [50]. (iii)
Evidence for the presence of such orbitals in this energy range has also been provided in
earlier photoemission experiments. on TTF-TCNQ [51]. Still, the experiments do not show
signatures of the spectral weight associated with the conduction band at energies smaller
than 1 eV and apparently constrain the ground state of any more realistic theory to be of
the large-o Luttinger-liquid type.

Also the absence of prominent dispersive features in angle-resolved experiments is
consistent with a large-or Luttinger-liquid picture. It is obvious from figure 10(%) that no
strong feature is observed near v, g, rather a smooth rise-in spectral weight, which renders
the detection of the dispersing onset impossible. Moreaver, at v,q there is just an upward
cusp whose experimental detectability is questionable: with a finite k-space reselution Ak,
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p{g, w) is integrated over a width Ak, sharp features are thus averaged over Ak and weak
singularities may be wiped out completely if Ak is not really small.

In the large-a regime, spectral weight is pushed away from v,g and appears shifted
to higher energies, typically a fraction of vg/A. The evaluation of p(g, @) for the spinful
problem is affected by the approximation involved, over this energy range. Since charge—
spin separation is not ‘important’ at these high values of ¢, the problem can as well be
discussed for the spinless model, where exact results have been given. Figure 7(f) shows
that, for large &, so long as ¢ < 1 (in units of A1), the maximum in spectral response is
at frequencies of order @ ~ vg/A independent of g. Dispersion only sets in for g >> 1.

The Luttinger liquid is a phenomenclogical picture. As such, its main shortcoming is
its inability to provide a microscopic picture for the origin of the interaction constants g;
but its principal virtue lies in the possibility to calculate all correlation functions and thus
to tie together various experiments. Important insight into the electronic properties has
been gained by NMR experiments [23, 24]. The temperature dependence of the spin-lattice
relaxation rate ’.1"1‘1 is governed by an exponent agpw = 1 — K, {(named y in Bourbonnais’
work [23]) and can thus be related to the exponent o measured in photoemission. Recent
experiments [24] give ospw ~ 0.85, thus K, ~ 0.15, and imply & =~ 1.25 consistent with
the photoemission experiment.

Another prediction is that the CDW response at 4kg, characterized by an exponent
®ap, = 2—4K,, is stronger than CDW and SDW at 2kp with exponents acpw = aspw = 1—-K,
9,13,21): for K, = 0.15, we find oap, = 1.4 > orspw = acpw = 0.85. The connection
of this prediction with the experimental sitvation is, however, not clear to date. Diffuse x-
ray scattering at 4kz has not been observed in the (TMTSF)2X compounds—but has neither
been observed in the related series (TMTTF),X where 44y charge localization has been
established quite convincingly. One might also be tempted to associate the observed room-
temperature dimerization with the strong 4kg response. However, the opposite evolution
with temperature in the TMTSE and TMTTF series shows that the physics presumably is more
complex [52]. ' ’ )

With these caveats in mind, consistency of photoemission with a Luttinger-liquid picture
requires to place the organic conductors of the TMTSF series in a regime of large o > 1.
Such values are far beyond the limits satisfied by the 1> Hubbard model [9, 10, 14, 31] and
also the quarter-filled extended Hubbard model [53], and would indicate the presence: of
important long-range electronic interactions. Phonons also can contribute to an enhancement
of & {47]. One would thus place the TMTSF compounds at the edge of a charge localization
transition but still on the metailic side, while the interactions in the TMTTF series are stronger
and would lead to localization. Evidence for important charge localization effects has been
produced with infrared spectroscopy on some TMTSF compounds [54].

As a final comment, we address the apparent universality of the (absence of) spectral
response in quasi-1D materials. While the electronic properties of the quasi-1D COW materials
are radically different from those of the organic superconductors, their photoemission
properties are quite similar. In particular, electron—phonon coupling seems to be the
dominant interaction in the COW materials. Notice in this context that many electronic
properties are determined by many-particle correlation functions, which depend on both
sign and magnitude of the interactions (for some examples see below). The single-particle
properties only depend on the interaction strength and are necessarily more symmetric.
More importantly, we discussed at the end of the preceding section how a vanishing density
of states over a finite energy range together with only weak singularities at onset naturally
emerges in a ‘paired Luttinger liquid’ where mobile charges are described by a Luttinger
Hamiltonian but the spins are gapped. There is ample experimental evidence for such a
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(pseudo)gap in a variety of CDW materials and its persistence deep into the normal state
[55], altbough the origin is usually sought in the thermal precursor fluctuations of the
Peierls transition [56]. The charge-spin separated version suggested above is consistent with
experiments on some compounds (e.g. KosMogs) but not on others (TaSes);I or (FA),PFs
(Fa stands for the organic molecule fizoranthene). There also seem to be more microscopic
. theories pointing towards such a picture [57]. ' ‘

6. Further developments and summary

h In thc precedlng sectlons the mﬂuence of charge—spin separatmn and of power—law
correlations on the single-particle spectral propertiss has been investigated, and the gquite
different consequences of both properties have emerged. When charge-spin separation is
dominant, the spectral response is characterized by a double-peak structure and the bulk of
the spectral weight is concentrated between the peaks. The anomalous correlations, on the
other hand, produce a transfer of spectral weight to higher energies and generally weaken
the observed divergences. In extreme cases, possibly even of experimental relevance,
correlations may. wipe out the spectral signatures of charge—spin separation. o

The single-particle response is fully described by the two velocities v, and the exponent
o. Tt does not depend strongly on the sign of the Luttinger interactions g; since o is
symimetric in g2, and the v, are just interchanged under g; — —g;. Many-particle correlation
functions do depend on the sign of the interactions and it is therefore interesting to search
for the effects of charge—spin separation there. Three density-wave correlation functions,
" which, in principle, can be studied by neutron scattering, are of particular interest: 2kp CDW
-and SDW and 4k CDW. Their retarded correlation functions are defined as

 RRx, 1) = —i0([0;x0), O O] B 1) ,
where the operators 0, are given in terms of the phase fields ¢,(x} and 6, (x) by [13] '

 Oconto) - 3“’—(——2—‘5?—2 xp[ﬁub,,(x)]cos[«/' 61 (620)
Osow=(x) —lwexpiﬁ@p(xn sl ()] ©25)
w1th two smular expresglons for the x and y components [13], and -
' ~dik o S
Oy (x) = E‘E(ETTF") exp[v/3 :¢p<x)1 | 620

CDW and SDW operators are products of a charge and a spin part and will therefore be'

- sensitive to charge-~spin separation in their dynamical properties while 4kg CDW will not,

~ Involving solely charge dsgrees of freedom The structure factor cIose to 2k;: is then gwen
by :

S(kp+gq, @) = —huRE,-,w(sz+q,w) - ‘ o (6.3)
AKotEs=2 ~ _ T
== f dx [ ds i@ qx>(v£[a[(a+w,x)2+x21 2 |

x [(A+iv)? +x2}ﬂ_-ffv’f2 + (x> =5t > -—t)). (6.4)
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Equivalent expressions are obtained for the magnetic structure factor y (2kg + g, @) (here
Ks — K;l for the x and y components of the spins) and for the 4kg structure factor
(simply replace all (K, v,) by another (X, v,)). The exponents of the previous section, are
aspw,; = ccow = 2— K, — Ks — 1— K, for spin-rotation invariance, and ey, = 2—4K,.
We do not attempt an exact evaluation of these functions but will only discuss their properties
qualitatively. The term in large parentheses in (6.4) is symmetric under separate interchange
of x > —x and t — ~—, implying independent symmetries of the structure factor under
@ — —w and g = —q. Analyticity considerations similar to those in section 3 show that the
structure factor vanishes for —v,q < @ < vzq (U5 < v, assumed). Moreover, S(2kg+¢, @)
will exhibit power-law singularities at 4-v,g whose exponents can be determined by power
counting. We find

52k +q, 0 & £0,9) ~ 0(lo| — vrg)(jw| — vaq)letEe/27h (6.5)
and
SQkg + g, » = v,q) ~ ||| — v,q|Fe/FET, (6.6)

The symmetry of the exponents in (6.5) and (6.6) is a consequence of the symmetry of
charge and spin degrees of freedom manifest in (6.4).

The magnetic structure factor x(24r + g, @) is governed by the same exponents as
S(2kp + g, @), and

S(4ke + g, 0~ v,q) ~ 8|0l — v,g) (|l — v,g)* 5. (6.7)

For K; = 1 and K, < 1 there are only cusp singularities at t=u,g in the structure factors.
As K, decreases (the interactions become more repulsive) the cusps will become more
pronounced and, as K, falls below 1/2 (notice in passing K, = 1/2 for the repulsive
Hubbard model [9,10, 14]), divergences will simultaneously appear at @ = Zu,g in
S(Q2ke + g, w) and x(2ks + g, ®) and at @ = *xv,q in S{@kr 4 g, @), while the cusp
will only sharpen at &v,q in the 2kr functions.

Apparently, the many-particle correlation functions produce complementary information
on the effective interactions close to the Fermi surface, to that provided by the single-particle
properties. .

Not only do they depend on the sign of the interactions (K, > 1 for attraction and
Ky < 1 for repulsion) but the range of coupling constants where strong divergences
are produced are opposite: while the single-particle properties diverge most strongly for
weak coupling (¢ « 1, ie. K, ~ 1), the many-particle properties such as the charge or
magnetic structure factors show their strongest divergences only at strong coupling, and by
comparing, for K, < -;—, x(2kg + g, w) with §(4ks + g, w) a fairly accurate picture of the
importance of charge-spin separation could be obtained. Were it not for the tiny sample
size, neutron scattering experiments on the Bechgaard salts would be most instructive since
the photoemission and NMR experiments discussed above seem to locate K, ~ 0.15, ie.
strong divergences are expected in the different structure factors.

Apart from experimental verification, it may also be interesting to check the predictions
of this paper by computer simulation. It is then important to choose carefully the model to
be studied depending upon the method used. For example, in the world-line Monte Carlo
method [58] the calculation of single-particle properties is difficult because it amounts
to interrupting fermion world lines. Two- and four-particle correlation functions require,
however, K, < -% for strong divergences; thus the Hubbard model will probably not produce
structured results and should be avoided in favour of models with longer-range interactions.
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The situation is opposite for algorithms evaluating directly the Green function [59] where
single-particle properties are readily obtained. Here, the Hubbard model will probably
produce the clearest results, and the predictions of section 3 should then be open to numerical
verification.
To summarize, we have stdied in this paper. the spectral properties of the single- and
many-particle correlation functions of Luttinger liquids. We have attempted specifically
to separate the influences of charge-spin separation and power—law correlations. Charge—
spin separation generally produces a double-singularity structure in the spectral functions at
o = v,g. Non-universal divergences there are caused by the anomalous fermion dimensions
as well as a shift of spectral weight to higher energies. Single-particle and many-particle
functions are complementary in that charge—spin separation is ‘most apparent in the single-
particle properties at smaller interaction strength and/or range while the opposite is true
for the two-particle correlation function. In any case, charge-spin separation can only be
_probed by angle—resolved expenments where the full dynamical correlations p(g, @) are
' probed : :
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