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Charge-spin separation and the spectral properties of 
Luttiier liquids 

Johannes Voit 
Instilut hue-Lmgevin, BP 156,38042 Orenoble C&x 9, France 

Received 29 March 1993 

Abstract We compute the spectral function p(q, U)  of the on&di&ensional LMtinger model. 
We dimss the distinct influences of charge-spin separation and of the anomalous dimensions 
of the fermion operators and theii evolution with anrelation strength. -pin separation 
shows up in finite spectral weight at frequencies beween uoq and vpq. where v., and vp are 
L e  velocities. of spin and charge fluctuations, while specbal weight above upq and below -upq 
is generated by the hybridization of the Fermi surface at i k n  by interactions. There are non- 
universal power-law singularities at these special frequencies. We discuss the consistency of 
recent photoemission experiments on low-dimensional conductors with a Luttinger-liquid picme. 
which $en would suggest very stmng long-range interactions. It is poinkd out that many- 
paaicle correlation functions in principle exhibit similar singularities, but they pmbe different 
and complementary aspects of the Fermi-surface interactions. 

1. Intmdnction 

There are fundamental differences between interacting onedimensional (1D) fermion 
systems and three-dimensional (3D) ones. In 3D, Fermi-liquid theory is based on the existence 
of quasiparticles evolving out of the electrons (holes) of a Fermi gas upon adiabatically 
switching on interactions. They are in oneto-one correspondence with the bare particles 
and, specifically, exhibit the same quanhm numbers and obey Fermi-Dirac statistics. Fermi- 
liquid theory describes the vicinity of the 3D Fermi surface, hut the quasiparticles are 
robust against small displacements away from the Fermi surface with a lifetime diverging 
as r - ( E -  Ideally, they dominate the single-particle spectral response with a sharp 
peak at UJ = ~ ( k )  becoming broader as E - EF increases. In addition to the quasiparticles, 
there are bosonic collective excitations such as charge or spin fluctuations contributing 
incoherent background to the spectral function. Of course, there may be borderline cases 
where the quasiparticle peak is weak and most of the spectral weight resides in the incoherent 
P*. 

In ID, there are no quasipdcles in the vicinity of the Femu surface and the excitations 
are gapless bosonic collective modes involving charge and spin degrees of freedom [I]. 
They usually propagate with different velocities: an incoming electron decays in distinct 
charge and spin excitations, which spatially separate with time. The quantum numbers 
are reversed: charge f e  and spin 0, and spin 1/2 and charge 0, respectively (a situation 
reminiscent of the solitons in polyacetylene [Z]); hence the name charge-spin separation. 
Correlation functions usually decay as non-universal power laws as a function of x and t 
and show non-universal singulaities as functions of q and w. All of these features have 
dramatic consequences for the spectral properties of interacting ID fermions, which are 
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much less studied than those of the Fermi liquid and which are the subject of the present 
paper. 

All these features-absence of quasiparticles, charge-spin separation, power-law 
correlations-are generic to 1D fermion Systems but are particularly prominent in the exactly 
solvable Luttinger model [3-6] whose ground state can be viewed as a gas of non-interacting 
bosons. All its correlation functions can, in principle, be calculated exactly. Based on 
case studies of Bethe ansatz solvable models [7], Haldane conjectured that this picture 
remains true, at least in terms of renormalized bosons and up to perturbative corrections, 
for the asymptotic low-energy properties of a much wider class of ID models, and coined 
the term ‘Luttinger liquid’ to describe the universal low-energy phenomenology of gapless 
1D quantum systems [SI. There is an obvious analogy to the Fermi-gas and Fermi-liquid 
pictures in higher dimensions as described above. 

Haldane’s conjecture has been verified extensively for many ID lattice models by a 
variety of methods. The parameters characterizing the Luttinger-liquid fixed point of Bethe 
ansae solvable models such as the 1D Hubbard model can be identified by comparing 
quantities that are accessible by both methods 191 or via conformal invariance [lo]. A 
similar procedure has been applied in a numerical study of the ID t-J model [ l l ]  but, 
surprisingly, these parameters can even be extracted from variational wavefunctions [E]. 
Perhubative renormalization group theory allows either determination of the Luttinger-liquid 
parameters or direct calculation of correlation functions [13]. 

The recent interest in Luttinger liquids is due, to a large extent, to Anderson’s 
proposal that the normal-state properties of the high-T, superconductors could be described 
by a hypothetical ‘tomographic’ Luttinger liquid [14,15]. Much of this discussion is 
based on the spectral properties of the high-T, materials measured by angle-resolved 
photoemission [16] and the anisotropic transport properties. A central issue there is charge- 
spin separation. Theoretically, the possibility of Luttinger-liquid behaviour and charge-spin 
separation in two dimensions is quite controversial [15,17,18]. Observe, however, that a 
variational wavefunctiou implementing Luttinger-liquid correlations currently produces the 
best variational energy for the ZD t-J model [19]. On the other hand, the spectral response of 
even the I D  Luttinger liquid, and, in particular, the manifestation of chargespin separation 
there, are only poorly understood. 

Experimental evidence for Luttinger-liquid behaviour in quasi-1D systems has been 
produced in various organic conductors and superconductors. In tetrathiafulvalene- 
tetracyanoquinodimethane (TTFTCNQ), for example, there are strong charge-density wave 
(CDW) fluctuations at wavevector 4 k ~  in addition to those at Zkp [20]-a fact that can 
be explained only by assuming sizable Coulomb interactions [21]. Moreover, the optical 
conductivity of lTF-TCNQ is strongly depressed at low fiquencies in the normal state [Z], 
in a manner consistent with a single-particle pseudogap, in the case when impurities and 
phonons are sufficiently efficient in suppressing the ideal Luttinger model’s delta-function 
conductivity. Mainly based on anomalous nuclear magnetic resonance (M) relaxation 
behaviour, a strong case for Luttinger-liquid behaviour has been made for the normal 
state of the organic superconductors based on tetramethyltetraselenafulvalene ((Tf~lTsF)~x, 
X=PF6, As&, ClO,, . . ., ‘Bechgaard salts’) [23,24]. The normal-state properties of quasi-lD 
inorganic CDW materials are much less well understood. 

Finally, most recently and synchronously with the present work, photoemission studies 
have been performed on both some inorganic CDW materials [25-27l and the organic 
superconductor (TMTSF)~PF~ [28]. These studies generally show an intriguing absence of 
spectral weight at the Fermi surface and, in the angle-resolved experiments, no dispersive 
low-energy feature reminiscent of quasiparticle peaks. It has been suggested [24,27,28] 
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that this could be related to Luttinger-liquid correlations. The similarity of the spectral 
response is highly surprising given the great dissimilarity in the other physical properties of 
these two classes of materials. Since the results of the present paper are of direct relevance, 
I shall comment on thii issue in more detail below. 

In this paper, I discuss in detail the spectral function of the Luttinger model and its 
energy-dependent density of states. I shall take care to separate the influences of charge- 
spin separation and of the power-law correlations characteristic of 1D fermions, in the 
spectral function. To this end, two important simplifications of the spinful Luttinger model 
will be discussed: spinless fermions exhibiting power-law correlations but not charge-spin 
separation; and a one-branch Luttinger model possessing charge-spin separation but no 
anomalous fermion dimensions. In the next section, these models will be presented together 
with an outline of the calculation of the single-particle Green function G(x, t ) .  The Fourier 
transform to the spectral function p(q, o) and results will be presented in section 3, together 
with asymptotic formulae for the real parts of the Green functions. 

In section 4 we present new results on the energy-dependent density of states of the 
Lnttinger model and of a related model whose charge degrees of freedom are of the 
Luttinger type but whose spin fluctuations are gapped. These results are a prerequisite 
for the discussion of section 5, which addresses the possible connection between the present 
findings and recent photoemission studies on quasi-ID materials. Section 6 will conclude the 
paper with an investigation of the spectral properties of many-particle correlation functions, 
which nicely complement the information extracted from singleparticle properties. A brief 
report of this work has appeared earlier [29] as well as independent parallel work by Meden 
and Schonhammer 1301. 

2. Model Hamiltonians and Green functions in real space 

The Lnttinger model [3-51 describes ID left- and right-moving fermions with linear 
dispersion through the Hamiltonian 

H = Ho+ H z f  H4 (2.14 

where 

(2.lb) 

(2.k) 1 
H2 =-- [gzll(P)~sz + g z l ( P ) ~ , - ~ , l P + , ~ ( P ) P - , ~ , ( - P )  

H4 = - 

P,S.S' 

1 
rg4lI(P)~~,s, + g41(P)&-s'l : Pr,s(P)Pr,s , ( -P)  : . (2.14 

Here cz. creates a fermion with spin s and momentum k on the branch r = f of the 
dispersion +(k) = uF(rk - kF) where up is the Fermi velocity, --03 c k c 00 and all 
negative energy states are filled. 

It is remarkable that this model can be solved exactly even in the presence of the 
(charge- and spin-current-conserving) interactions Hz and H4 with spindependent coupling 
constants gzo , l (p)  and g411,~(p) coupling the density operators 

2= ,,P,S,S' 
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normal ordered (denoted for short by the symbol : . . . :) because of the infinite ground- 
state expectation value of the number operator xk C L C , k $ .  As a consequence of *e linear 
dispersion the pr.s obey boson commutation relations 

[P,, (PI. P,,.~, (+)I = -s,, ,s,,~,sP,,,rpt/(2x). (2.3) 

Introducing operators 

+(P) = ( 1 / 4 [ P , T ( P )  P,&(P)I  (2.4) 

for charge (U = p, '+' applies) and spin (U =U, '-' applies) fluctuations, H separates into 
a charge and spin part and can be written as a boson bilinear 

(2.6b) 

( 2 . 6 ~ )  

Equation (2.6) suggests the possibilitj, for an eiact solution via a Bogoliubov transformation 
[5],  but @ equivalent solution has also been produced by diagrammatic metbods [61 using 
Ward identities. 

There have been diffeient cut-off procedures in the literature. An unambiguous One, 
used throughout what follows, is to impose a cutdff A on the momentum tfansfer of the 
intemtions g ( p )  [8], pr@ucing rhomentum-dependent gi(p). The cut-off A must be kept 
finite to ensure a normalizable giound state, although its value is without importan&. A 
comment is in &der on ihe values gi(p = 0) appearing in iater calculations. Generally, for 
ad interaction 

the coupling constarits g i ( p )  are obtained by neglecting the dependence on k and k' and 
accounting for the antisymmetry of the femiion operators: 

In general, gi(0) will be finite. However, g41 = 0 implying that no non-trivial scaltenng can 
originate from his interaction. Q i s  is simply seen by crossing the legs in a diagrammatic 
representation. Choosing a finite g411 will only produce a renormalization of the single- 
particle properties such & U, and U, @elow). Notice that g411 = 0 with 941 finite is fully 
compatible with spin-mption invariance. 
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After diagonalization, we have from equations (2.1) or (2.6) 
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(2.7) 

where the renonnalized velocity of the collective excitations is given as 

U J P )  = KW + t 4 v ( ~ ) / ~ i 2  - ~ 2 v ( ~ ) / ~ 1 2 ~ 1 k  (2.8) 
For g41 # 0 we find~v, # U,,, diaking apparent that chaige and spin fluctuations 

propagate with different velocities. Ctiargespin sepaiation is a manifest property of the 
Lukinger model, equations (?.6), while in more ri5alistic theories it is dynamically genkrated 
in the vicinity of the Fermi surface aiid holds for the asymptotic IOW-energy properties 
[9,10,14,15,31]; &I addition, @ere is a stiffness const& 

Kv@) = {InUF + g4v(P) - gZv(P)i/[?UF + g4v(P) + ~ZV(P)]]~’ (2.9) 
governing the long-distance decay of bopelation functions. K,, = 1 for spin-rotation- 
invariant problems: The non-universal quantities il” ind K,,~~mpletely describe the physics 
of the mtidel. The Luttinger-liquid hyp6thesis posfiilated that renormalized uY and K, @O 
describe the asymptotic low-energy physics of mbfe redistic ID quanhd systems proiided 
they have massless excitatibris .[7l and that, to fowest order, rel&ons between ‘different 
comlatidii functions, expressed in the (ion-univeisal) K, ,and U,, &e univ&al there. 

W i l e  our mais interest is targeted at the spidfui Lufiingef model, eq&tions (2.i) and 
(2.6), we ,shall alsu discuss two toy problems ta separate power-law c&elationS‘ fiom 
chargespa separation in tlie S+ctrd fiinctions below. Spinless fermioni can havs non- 
?vial exp6nents & + 1 huf bave only on? velocity U(: If & = g% = 0 the two brrinches 
of the Luhinger mo(le1 &couple. Then F, = K+ = 1, i:e. the sape vaue as fdf free 
fedoris. The renydiiiig giL # 0 will vowever yield U, # U,,, i.e. a n ihna l  mo&i for 
chaige-spih separatioi. Even a s~pdified model has physical relevaice, e.g. for the 
edge stab5 responsible for transport the quantum -1 eff&t whke fie bong magnetic 
field gives 3 definite ch%diiy to the psrticles and the srjin degiees of freed<& survive under 

cirqmi&nces [%I. Moreover, it h& been corijechlr$ hat  a related problem is 
ecacily solvable even on $ laKice [33]. 

we wish to Calculate tG speed hcticiii 

p r r k 4 . w )  = - I l / r r ) I m G ~ ( k ~ + i j , w + ~ )  (2.10) 

GFJ~; i) = - i ~ ( r ) ( ~ + r ~ ( i i ~ ,  +A(oo~}). 

where G~$F +.q, ii + p) is the Foj&er. tjgsfonii of @e ridadd Grvn functidh 

(2.11) 

+rs(xt] describes €e$ons in real space, (. . : , . . .] denotes the anticommutator, a$ p is the 
chemical potential. ;l;s 6 related to the bosons U,@) via Haldane’s hosofizatio.3 identity 
[SI 

(a sislar expression was derived in 1341) through bosonic phase fields 

(2.120) 

(2.12b) 

(2.12Cj 
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U,,, is a fermionic ladder operator and N,, are the q = 0 components of the density 
operators. 

/ 

Equation (2.11) is then evaluated as 

R . W) A + KuFt - rx) GJx, t )  = -I- exp(irkFx) l i  
2rr 

(2.13) 

(2.14) 

Here 

yV = (Kv -k K;' - 2)/8 

with 

K, = lim K&) and uy = lim U&). 
P-tO P-+O 

Equation (2.13) agrees with Suzumura [35], and is exact to logarithmic accuracy, i.e. in 
the power laws. Corrections of order exp(x-', t-') depending on details of the interactions 
have, however, been neglected. Notice that G(x, t )  and thus all singleparticle properties 
depend only on the exponent yv and the velocities U,. The exponents yu mainly measure 
the strength of the interaction but do not distinguish between attraction and repulsion 
(Kv  + K;' upon gz + -gz). A sets the scale for the crossover from free-fermion 
behaviour for 1x1, It1 << A to Luttinger-liquid decay in the opposite limit. The first factor 
in square brackets is a consequence of accounting for the momentum dependence of U&) 
and K , ( p )  and of vital importance for the correct behaviour of the spectral function at 
large frequency and wavevector. In some cases, one may wish to work with approximate 
expressions neglecting the p dependence of U, and Kv.  There equation (2.13) reduces to 

(2.15) 

This approximation has been employed frequently [29,30,36]. For spinless fermions, 
GF3(x,t) can be obtained from (2.13) and (2.15) by replacing the U contributions by 
another p contribution of the same structure, while the onebranch Luttinger liquid is simply 
generated by setting y. = 0. 

3. Results: G(k,w)  

The principal problem remaining is the Fourier transformation of equation (2.13), 

GFs(k,o) = l I & L d t e x p [ - i ( k x  -wt)lGfs(x,t). 

I have failed to perform this transformation exactly for the generic model, equation (2.13). 
Serious difficulties arise in the computation of the real parts (to be discussed in section 3.2) 
and when more than two velocities are present Progress is possible for the calculation of 
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The spectral function obeys the sum rule 

m 

d o  p&, o) = 1 for all q 

which has been verified for all the results presented below where not stated explicitly to 
the contrary. Two important quantities can be derived directly from the spectral and time- 
ordered Green function. The single-particle density of states 

behaves asymptotically (w + 0) as 

The momentum distribution function 

is derived from the timeordered Green function, and varies as 

@F + 4)  4 - c1 Sgn(q)lql' - Czq for 4 << kF. (3.6) 

The exponent 01 characterizes all singleparticle properties and is given by 

a! = 2(Y, +YO). (3.7) 

It has played an important role in the recent discussion about the Luttinger-liquid description 
of ID lattice models [7-10,311. For the repulsive Hubbard model off half-filling, 01 c 1/8 
[7], where 01 = 1/8 is reached for infinite U. More detailed calculations of  these quantities 
are reported below. Because of  its key role in the past, a! will be used throughout for 
labelling the figures where we limit ourselves to the spin-rotation-invariant case ye = 0. 

3.1. Spectralfunctions 

We shall discuss, in order, spinless fermions, the one-branch Luttinger model and the spinful 
model to gain an understanding of the roles of anomalous dimensions and charge-spin 
separation, respectively. 
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3.1.1. Spinless Luninger model. We begin with spinless fermions. The spinless Luttinger 
model allows us to study the influence of the anomalous dimensions of fermions without 
chargespin separation. This problem has been considered previously in an approximate 
manner by Luther and Peschel 1361 based on equation (2.15). It is interesting to reconsider 
this simple problem also because the crossover to the high-energy limit 4 >> A-' can 
be studied in a fairly complete and detailed manner using the Green function (2.13). We 
introduce new variables 

s =vat - r x  s' = uot+r.x (3.8) 

and obtain, using (3.1), 

(3.9) 
where the following new quantities have been defined: 

q = k - rkF Q, = o/2uo -I- rq /2  62 = w/2uo - rq/2 

OF = $(uF/uO + 1) bF = i(uF/uO - 1 ) .  
yo and uo are defined similar to equations (2.8), (2.9) and (2.14) by 

U0 = [U; - (g2/27r)ZI"Z 

KO = [(ZXVf - gZ)/(kuf + g*)11'2 

yo"= $(KO+ KL1 - 2 )  

(3.10) 

where these quantities have been taken at p = 0 and we have set g4(0) = 6: The integrand 
in (3.9) has a branch cut in each variable and a pole at (Y +i(uFs+bFs') = 0 whose location 
depends on the other variable. 

In the approximation of constant velocity UO, uf does not appear, uf = 1 ahd bF = 0, 
and the integral over s' decouples. This is the problem considered by Luther and Peschel 
[361, who evaluated that p(q, o) approximately for s m d  q and o, but pr(q, U )  can be 
evaluated without further approximation as 

for YO # 0 - ( 3 . 1 1 ~ )  

pr(q. o) = S(o - uorq) for yo = 0 (3.11b) 

where y (a .  x )  is the incomplete gamma function. 
Our regions of non-vanishing spectral weight and the exponents of divergence agree with 

Luther and Peschel. Unlike Luther and Peschel [36], who find a decay as for large 
frequencies, our spectral function decreases exponentially. For yo = 0, in equation (3.9) 
only the pole s = iar survives and the s' integral then produces the 8-function. 
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This function has been described qualitatively before 1291. For q gs 0, there is spectral 
weight at w 2 uoq with an onset as (w - u ~ q ) ~ - ' ,  i.e. a divergence for yo < 1, a. c u p  
singularity for 1 < yo 6 2, and a smooth onset for PO > 2. At negative frequencies there 
is weight below o = -uoq with an onset as (-0 - uoq)M. This is appreciable only at 
small momenta qA .< 1, and exponentially suppressed for larger q,  cf equation (3.11). 
Apart from the transfer of this spectral weight from negative to positive frequencies a$ q,is 
increased, the positive frequency part is scale-invariant and disperses 'with uoq. For 4 = 0, 
i.e. k = kF, the divergence changes and p(0, w )  - I W / ~ ~ - ' .   these features are illustrated in 
figures 1-3; Figure 1 displays p(0, o) for various values of (I = 2y0. The change from a 
divergence to a cusp singularity is obvious. Here and in the following, we have determined 
uo from (I via equation (3.10) and we have chosen as units up = 1, A = 1. Figure 2 displays 
the asymmetric shape of p(q. w )  for finite q. here q = 0.1, and its evolution with '(I. The 
asymptotic behaviour of equation (3.110) is not always apparent here, especially for the 
larger (I. In fact, for (I > 1, significant spectral weight resides at negative kequencies, which 
is taken out of the positive frequency part somewhat behind the onset. This is obvious from 
the inset of figure 2 where the region o Y uoq for (I = 3 has been blown up. Although not 
apparent on the full scale, the asymptotic prediction p - (w- u ~ q ) ' / ~  of equation (3.1 la) is 
satisfied. At higher q,  the spectral weight at negative frequencies decreases exponentially, 
changing somewhat the shape of the o t 0 part. This is seen in figure 3 where '4 = 0.5 
and we only show the positive frequency part. Also the asymptotic behaviour for w Y uoq 
is much more prominent, confirming that it is masked by transfers of spectral weight to 
w < 0 as q + 0. Figure 4 finally shows the dispersion 'with q of the spectral function for 
(I = 0.125. The large values of (I in figures 1-3 may appear of purely academic interest in 
view of the limitation (I < 1/8 for the Hubbard model. However, experiments [24,28] do 
suggest values of g in.excess'of unity and it is'important to study the evolution bf p(q. w)  
in this regime. We only show figures for q > 0, where w i 0 corresponds to photoemission 
and o ? 0 to inverse photoemission. For q < 0, the spectral function is obtained by simple 
reflection at a, = 0 from that at q > 0. 

The spectral weight at positive frequencies corresponds to the creation of a particle above 
the Fermi sea (~~,+~,,(t)c$+,,(O)) with q S 0 while the response at negatiGe frequencies 
comes~from the hole creation above the Fermi sea ( ~ $ ~ , ~ ( O ) c ~ ~ , ~ ( f ) ) .  This process is not 
allowed in a free Fermi gas but occurs here due to the finite number of particles excited above 
kF in the ground state by the interaction gz. This is most easily seen fromihe momentum 
distribution function n(k), equation (3.5), which is finite for q > 0. The asymmetry of the 
Spectral response is due io the small number of particles excited above kp in the go&d 
state. The spread in spectral weight is caused by the gz interaction allowing an incoming 
particle to evaporate an arbitrary number of particle-hole pairs on the opposite branch (as 
in the x-ray edge.problem). 

The relevant processes are depicted schematically .in figure 5. Consider the Lhmann 
representation 

(3.12aj 

.~ 

p(k, w )  = SCw)p+(k, w )  + O(-w)p-'(k, -0) 

with 

(3.12b) 

(3.12c> 
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1 

0.8 

0.6 - 
3 
0; a 

-a=0.125 1 1 
- -a = 0.5 
---a= 1.5 
.....a 3 

I I  
I \  
I \  

I \  
I \  

Figure 1. Spectral function p(0.w) at the Fermi 
WiLvevector for different values of a. ' Ibis plot is 
equally valid for Ihe spinless and spinful LuUinger 
liquid. 

Figure 2 SpecnaI function p(q,o)  of the spinless 
Lnttinger liquid for q = 0.1 and various a. Here and 
in all following fiWES, anits am chxa as A = I 
and VF = 1. The inset shows the asymptotic behaviour 
close to the onset of spectral weight for a = 3 to be 
in agreement with the prediction of equation (3.111, 
although this is not apparent on the scale of the 
main figure. This figure, as well as figures 3 and 4, 
use the approximation of wmtant renormalized charge 
velocity. The relation between the a values in the 
figures and the velocities is that for the Lottinget mdel 
and the procedure for conversion is explained in the 
text 

in obvious notation [37]. In figure 5(u) in step (1) an electron is injected into the system 
with wavevector kR + q.  H2, equation (2.66), generates a particle-hole excitation with 
p > 0 on both sides of the Fermi surface, giving an energy 

&N+1 = vq + 2vp > vq (3.13) 

after step (2). In figure 5(b), the particle-hole excitations are created first in order to have 
electrons above kF, In step (Z), one of these electrons is ejected i.e. a hole is added to the 
system. Then 

EN-' = 2vp - vq > vq (3.14) 

since the particles excited in (1) must come from below the Fermi surface, i.e. p > q .  This 
produces spectral weight for w < -vq since we have p-(k, -0) in (3.12~). Similarly, the 
injected particle in figure 5(u) can be relaxed by a particle-hole excitation with p < 0 if one 
had excited particles in the system before the arrival of the test particle. These processes 
also contribute to the part at o z voq . 

The main shmtcoming of equation (3.11) is the inadequate description of the higher- 
energy properties of the model. It seems natural to expect the spectral response to be 
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a = 0.125 

1 . 6  --q = 0.1 ,I  

e a 
0.8 

I 1  
I 1  
I \  0.4 

n 
-0.5 -0:l 0.3 0.7 1 . 1  1.5 

w 

P i p  3. Spectral function p(q.0)  of the spinless 
Lultinger liquid for various a. Only the positive 
hequency pad is displayed. 

Figure 4. Dispersion of the spectral function p(q, m) for 
a = 0.125 with q.  

Figure 5. Sketch of the mechanism for the generation of spectral weight by hybridizahon of the 
Fermi surfaces via g2 at positive frequencies (a) and negative frequencies (b), cf text. Event 
(1) occurs before event (2). 

determined by u.q at values of q >> A-' instead of voq in (3.11), and naively one would 
expect p(q. CO) to become a 8-function as q + 00 and interactions become unimportant. 
To remedy this problem, one must treat correctly the short-range properties of the model 
and prefer the Green function (2.13) to the approximate one (2.15), simplified, of course, 
to spinless fermions. We then have to evaluate the full integral (3.9). The p(q. o) can be 
decomposed into three terms: 
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+ (Ql -+ - 0 1 ,  Qz + -Qz). (3.15) 

Here the pole in equation (2.4) is cancelled by the vanishing residue i(aFs + bfs’) x (. . .) 
in the numerator and only the branch cuts contribute. There is a finite residue of the pole 
from the remaining term in the numerator 

+ 6-21 + -Q1, Qz + -%I. 
Finally there is the contribution from the integral along the s’ cut: 

(3.16) 

-F (Q1 --z -611, Qz --z -Qz) (3.17) 

where W*,*(z) is Whittaker’s function [381. This function can be represented as a sum of 
two confluent hypergeometric functions [391t, one of which reduces to an exponential and 
cancels pz(4, U). For the remainder of ~ ( 4 .  o), we use an integral representation [40] for 
the confluent hypergeome@ic function to obtain 

+ (a1 + -611, Qz -+ -Qz). 

t Formuhe in Gradshteyn and Ryzhik 1391 will be abbreviated as GR x . yyy. z 

(3.18) 
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GR 3.385 has been used in the last equality ,and &(a,b.c;x'; y) is the confluent 
hypergeometric function of two variables, GR 9.26. ' ~ . 

The part p~(q.w)  is quite similar in structure to the spectral function (3.11) .and, in 
fact, is the dominant contributiop for small q with an onset at positive frequencies at v0q 
with exponent yo - 1 and.a weaker singularity (exponent yo) at w < -uoq. The important 
difference lies in the exponentid factor exp(-Ai/uo) strongly suppressing contributions 
from this term for q A  2 1. 

W e  tum to equation (3.18). The first term in the large square brackets contributes for 
uoq < w < u ~ q  (if 4 z 0) with 
p l ( q . 0 )  for small q ,  and peaks at u ~ q .  The second decays from w = uFq on towards 
higher w,  implying a maximum at w = upq. Since standard references [38,39] do.no,t give 
much information on b, c; x ;  y) we prefer a numerical evaluation of the integral in 
equation (3.18) for generating the following plots. 

Figure 6 displays the positive eequency parts of p(q,w) for (Y = 0.125 md various q.  
Generically, there is a double-peak structure with the tw,o features located at 0 = uoq and 
w = U F ~ .  Figure 6(a) shows that, at small q,  all spectral weight resides in the divergence at 
uoq. At large q the peak at U F ~  dominates. Figures 6(b) and (c) decompose the total spectral 
k c t i o n  into p ~ ( q .  w),  equation (3.15), and @(q,  w), standing for equatioq (3.18), The 
pl(q, w )  has a power-law divergence at w = uoq whose amplitude is, however, suppressed 
as exp[(w + voq)A/2~0] as q is increased. On the high-frequescy side of p~ develops a 
contribution from p ~ ,  which is peaked at w = uFq, i.e. the unrenormalized dispersion. It 
is apparent that as q is increased spectral weight is transfene$ from the 'narrow peak at 
w = uoq into the broad bump between uoq and UFq while the response beyond VFq is very 
weak This peak sharpens as q increases but one does not recover a S(w - u ~ q )  signal ,as 
q + CO; instead one forms an asymmetric structure at u ~ q  with a more gradual rise from 
lower frequencies and an extremely sharp drop towards higher frequencies. 

One may be surprised to find that spectral weight 'is simply transferred, like in 
communicating tubes, betwen features located at uoq 6.e. the q --t 0 limit of the dispersion) 
and wq (i.e. its q + 00 l i t )  while the renormalized velocity uo(p) of the bosons is 
p-dependent through gz@). It is tempting to associate the loss of any p dependence 
interpolating between uoq .and uFq to our evaluation of the Green function, equation (2.13), 
to logarithmic accuracy (in the exponentials) where the results are independent of the explicit 
p dependence of gz(p). On the other hand, evaluation beyond logarithmic temp using 
very special p dependence of gz produces a similar double-peak response [41], suggesting 
that there is little contribution to the fermionic propeaies from such non-universal terms. 

Figure 7 finally shows the positive frequency part of p(q. w) for (Y = 0.5 (a) and (Y = 3 
(b) .  The bigger difference UF - vo for larger (Y makes the double-peak structure in p and 
the shift of spectral weight with q between both peaks already quite apparent at (Y = 0.5, 
The evolution with CY is also very interesting. As CY increases to produce a cusp-like (or 
even flat) onset, e.g. (Y = 3, the maximum of spectral weight is pushed up a finite distance 
from the onset uoq. For q < 1, the maximum in figure 7(b)  is at w - 0.5 independent of 
q so long as q < 1. Only for q >> 1, when the upq peak dominates the specmun, does the 
maximum start dispersing. 

3.1.2. One-branch Luitinger model. The second toy problem we consider is the spin-1/2 
one-branch Luttinger liquid, gz, = gz., = 0. For gal # 0, up # U, and this mode! exhibits 
charge-spin separation. The correlation function exponents K. = 1 are, however, those of 
free fermions. The Green function is directly obtained from equations (2.13) or (2.15) by 
setting yv = 0.' In the approximation (2.15) where only the renormalized velocities appear, 

onset as (0 - u o q ) ~ ,  i.e. a weaker singularity 
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Figure 6. (a) Dispersion of the positive 
frequency part of the spectral hrnction p(q. U)  

for a = 0.125 when the p dependence of the 
renorrealized velocity is acmunted for. (b) and 
(c) Decomposition of the total spenral function 
into the "ibutions of equations (3.15) and 
(3.18) and the transfer of swckal weight from 

the spectral function is 
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which has been discussed previously [6,29] and is not replotted here. 
A calculation including the crossover to the correct high.(q,o) limit is, however, 

possible starting from (2.13). It closely parallels the one outlined above for spinless 
fermions, and we obtain 

P ( 4 >  0) = PI k 7 P  4 + m(4, o) 

and 

+ (Q3  + 4 - 2 3 ,  Q 4  + 4 2 4 ) .  (3.21) 
We have defined 

Q3 = (0 - uprq)/(vp - vo) 514 = (vprq - w)/ (up - U#) 
(3.22) 

For the model defined by equation (2.1) CF = dF = 112, but in a more general situation 
[32,33] they may be different. Whenever an ordering of up and U, was necessary, we have 
chosen up > U, corresponding to repulsive interactions (we shall make the same choice 
for the MI problem below). For attractive interactions, the role of up and vu is reversed. 
The p , ( q ,  o) is quite similar to the earlier result (3.19) apart from an additional exponential 
factor suppressing its contribution at high q. More interesting is, in fact, a(q.o). This 
function behaves l i e  (o - u,q)l/z close to the borders of the region of spectral response 
but exhibits a logarithmic singularity at o = wq in its centre. In figure 8(u) we show 
p(q, w)  for q = 0.5 and g 4 ~  = 0.5 and its decomposition into p1 and pz. For the same g 4 ~ ,  
figure 8(b) displays the dispersion of p(q, o) with 4. It is apparent that, in a way similar 
to the spinless fermion case, spectral weight is transferred from the square-root divergences 
into the log singularity as q is increased. For 4 = 5, the squareroot divergence is no longer 
visible and the singularity at u ~ q  contains the full spectral weight 

The inverse square-root singularities at the spin and charge fluctuation dispersions 
collapse into a S(w) peak as 4 + 0. This implies a momentum dishibution function 

(3.23) 
in agreement with Luttinger's theorem [42] and would suggest a Fermi-liquid picture. It 
is clear, however, from the dispersion of the shape of the spectral function with 4. that 
the physical picture must be radically different and that the notion of a quasiparticle does 
not make sense. The incident electron decays into a multiple charge (resp. spin) carrying 
particlehole fluctuation on the same side of the Fermi surface. There is no spectral weight 
at negative energies because there are no particles present in the ground state above kF. 

The preceding discussion demonstrates that n(k), and, more generally, any physical 
quantity depending on k or o alone, is insensitive to the effects of charge-spin separation 
and is dominated by the power laws generated by the anomalous dimensions of the fermion 
operators. Chargespin separation is visible only in the full q- and o-dependent dynamical 
correlation functions. Quantities depending on Q or o alone can only probe the power-law 
correlations. 

CF = (UP - v,)/(up - vu) dF = ( u p  - U F ) / ( V ~  - us). 

n(k) = B(kF - k) 
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Figure 8. Spectral function for &e one- 
branch Luuinger liquid. (a) Decomposition 
of ~ ( 0 . 5 , ~ )  bta the cnnhibutions of equa- 
tions (3.20). giving bv- square-mot diver- 
gences at the edges, and (3.21). producing a 
logarithmic singularity at the centre. (b) The 
dispersion with q and the transfer of spectral 
weight W e e n  the two features. 

3.1.3. Spin@ Luttinger model. We are now in a position to discuss the spectral properties of 
the spinful Luttinger liquid, described by the Green function (2.13). This problem involves 
three velocities (up, up and uu) and is extremely difficult to solve. We shall therefore discuss 
the approximate Green function (2.15) where UF does not appear and up and U, govern the 
dynamics of the charge and spin fluctuations over all energy scales. 

From the previous discussion, we would expect power-law singularities at w = fu ,g  
and aregion of zero spectral weight between &u,q (for U, 4 up). The latter is determined by 
the analytic properties of G(x,  t ) .  which become most prominent upon introducing separate 
coordinates for right- and left-moving fluctuations of the type with the smallest velocity 
(here spin fluctuations): 

(3.24) s = u,,t - rx s’ = uur + rx 
producing 
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with the definitions 

QI = w/(Zu,) + rq,/2 

a, = (up + %)/(2vu) 

$22 = w/(Zu,) - rq,/2 
(3.26) 

Both the s and s' integrands have non-analyticities (branch cuts) only in the complex upper 
half-plane, implying that spectral response is l i i t e d  to Q1 > 0 and Q2 > 0, i.e. w > u,q. 
The term produced by inverting s and s' yields a contribution only for w c -u,q. Also 
the asymptotic behaviour close to w = fu ,q  is quite apparent one has QZ N 0, 81 finite 
(resp. the opposite) and obtains from power counting 

bo = (up - vu)/(2vc). 

p&. o Y v,q) - e(@ - 
p,(q,w Y -v,q) - e(-0 - v,q)(-o - v,q)2"n+". 

- , , ,q )2y~+"-1~ 

(3.27) 

The second l i e  applies only for y, z 0; for y, = 0, spectral weight appears only at 
0 = -U ,q (keep s as above but use s' = uPt + rx to see this). The divergences at 
w = &u,q are best seen by going to new variables 6 and 6' obtained from (3.19) by 
replacing U, + U,. Then we find 

pr(q. w N upq) - Iw - 7Jpql"+2"-"2 

pr(q. w N -upq) - 10 - u p q I y ~ + 2 y ~ .  
(3.28) 

These exponents agree with [30] and reduce, for yo = 0 (spin-rotation invariance), to 
those given earlier [29]. Equations (3.27) and (3.28) are quite different from the proposal 
by Anderson and Ren [14]. Their function has the correct regions of spectral weight at 
positive frequencies, but they give an exponent a = 2yp instead of 2y, - 112 for the onset 
at o = vug and completely m i s s  the divergence at u,q. Moreover their pole at w = -upq 
turns into an (-0 - uq)yp singularity here. 

For yo = 0, a full calculation of the spectral function is possible with one major 
approximation: some integrals become solvable only upon replacing a in (3.25) by the 
cut-off A. Thii will modify the spectral function at higher energies and wavevectors and 
thereby violate the sum rule (3.2). (Roughly speaking for fixed a, a factor exp(-lqlA) 
is introduced into the spectral function. This is best seen by comparing equation (3.11) 
to (3.15): applying in the present approximation to (3.11) will precisely produce (3.15)!). 
The results to be shown below are therefore restricted to very small values of q and w 
where the approximation does not affect the results in an important way. The details of 
this calculation have meanwhile been published by my competitors [30] and I shall not 
reproduce them here. 

F ig re  9 shows the dispersion with q of the spectral function for a = 0.125 (i.e. the 
a of the U = 00 Hubbard model). As before we determined g41 = g u  = gzll from CY 

via K ,  (equation (2.9)) putting K ,  = 1 (spin-rotation invariance) and injected them into 
equation (2.8). It is apparent that the spectral function carries features both from the spinless 
fermion function (synonymous with 'anomalous fermion dimensions') and from the one- 
branch problem (synonymous with 'charge-spin separation'). The picture is, however, far 
more complicated than a simple addition of these two problems and, to some extent, multiple 
crossovers can take place between regimes where one or the other feature is prominent 

If q is very small (say q = 0.001), on the scale of the figure, p(4 .0)  resembles 
pretty much the spinless fermion function. The separation of spin and charge at positive 
frequencies is not resolved at the scale of the plot but can, of course, be visualized by 
using a different scale. There is also a negative frequency con!dmtion of deceptively small 
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Figure 9. Dispersion of the spectral function 
p(q, 0) for the spinful Luninger liquid for (I = 
0.125, the value for the infinite-U Hubbard model 
Notice the crossover, on the scale of L e  figure, of 
a spectral function similar to L e  spdess Luuinger 
liquid to one more reminiscent of the charge-spin 
separated one-bmch problem. 

amplitude whose cusp exponent 1/16 can hardly be distinguished from an edge discontinuity. 
As q is increased, charge and spin fluctuations respond at visibly different frequencies. Also 
apparent is the slightly larger exponent in the divergence at the charge excitation energy: the 
curve is slightly asymmetric and the peaks have larger amplitude at u,q as compared to u,q. 
Although the actual peak height IS determined by the matching of u,q with the w grid used 
in the plot, it is systematically higher at u,q for all q.  As q increases, the weight at negative 
frequencies decreases exponentially and would hardly be visible in figure 9 for q = 0.025 
and 0.075. It is also manifest from figure 9 that, at these small values of a and at not too 
small q. the spectral function is more similar to that of the one-branch problem than to those 
of the spinless fermions. The exponent at u,q in figure 8 is -3/8 and at upq -7/16 instead 
of -1/2 in the onebranch Luttinger liquid. In other words, for small correlation strength 
a, the charge-spin separation is the dominant feature in the single-particle properties of the 
Luttinger model (this may be different if U, and U, are allowed to vary freely and when 
their difference is not too important). Thinking about experiments where a fixed resolution 
is imposed, figure 9 suggests that the double-peak structure characteristic of charge-spin 
separation is only resolved beyond a critical momentum. 

Figure 10 shows the evolution of the spectral function as a is increased. For k = kF 
we have again p(0, o) - [o[u-l, and plots are quite similar to figure 1. As a is increased 
beyond unity, spectral weight is pushed far away from the Fermi surface. The same trend 
occurs at finite wavevector. Figure 1O(a) displays the behaviour at rather small a for 
q = 0.05. The negative frequency part is very small and not shown. The spectral weight 
is mainly concentrated between u,q and u,q, and the difference in exponents of the two 
divergences is amplified as a increases. For a = 0.5, one has an edge discontinuity at u,q 
in agreement with (3.27), while close to u,q, p - Iw - ~ , q l - ' / ~ .  As one goes towards 
higher a, figure lo@), the behaviour close to u,q evolves into a cusp and finally into a 
flat onset, while close to u,q, an upward cusp emerges for a =- 1, and precisely at a = 1, 
one recovers a logarithmic divergence. For a > 1, a maximum appears in p(q, w )  at high 
o (0.3 to 1 in units of A/uF)  outside the range of figure lo@). Moreover the contribution 
at o < 0 rises to become a sizable fraction of the one at o z 0. The differences to the 
Anderson-Ren predictions are readily visible. The evolution in figure 10 also demonstrates 
that the violation of  the sum rule generated by the approximation above depends sensitively 
upon a. 

Although we have not yet been able to solve the general problem including the crossover 
to the correct high-q limit of the dispersion, o = upq, predictions can be made based on the 
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m e  10. Evolution withcorrelation strengiha ofthespectral function ~(0.05, o) of the spinful 
Luttinger liquid. (a) ‘Weak‘ correlation regime where charge-spin separation is dominant. (b) 
‘Strong’ correlation regime where the anomalous fermion dimension effects are dominant. The 
01 dependenee of the sum-de violation introduced by our approximation is also apparent. 

pressnt results and the understanding of this crossover we obtained in the Spinless fermion 
and one-bradch cases. Generically, we expect a third haximum in the spectral response at 
vpq. This m&ximum will not be very pronounced at small q w d  small a but will grow out of 
the backgrouhd as q andor a are increased. If a is small, it will be located between iJ,,q and 
u,q and probably be quite similar to the one-branch Ludinger liquid. I do not, liowever, 
exp&t a mi: divergence at usq. As IY increases, it should get more of the asymmetric 
edge-like s tk tu re  of the spinless model and rather appear on the high-ir, side of the upq 
divergence. It is clear then that the signatures of chargtspin separation Will fade away as 
one leaves thb neighbourhood of the Fermi siiiface but One will not recover a 6-fptlction 4s 
q i m .  

f i e  medhanism of generation of spectial weight in the preserice of chkggespin 
sepa?ation is Sketched in figure 11. In step (1). a particle constituted by ;I charge a’hd a spin 
paft is‘ absorb;& by the system at wavevector q. The particle, decompbses into a charge 
part with momentum q - p and a spin part with momentum q + p, with -4 p 4 q. 
Follbwing the reasoning of equations (3.12) And (3.13Jj the energy eN+l will become 

(3.29~) p + l  = 1 *Ivp(q - P )  + U&? + P)1 

and be limited to 

v,q < &::I < u,q. (3.29b) 

This gves the spread of spectral weight due to chargi-spin sepaiation, i.e. all one-has in 
the one-branch Luttinger liquid, &pation (3.19). The g4 scattering cannot change &&+I. In 
step (Z), particlLLhole excitations in the charge channel (we assume g2, # e, g b  = 0) will 
boost the energy of the charge part of the particle s h i l a r  to the spinless fermion problem, 
producing a spkad in spatial weight beyond o = upq. The prbcesses for generation of 
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Figure 11. Sketch of the piocess at the origin of the 
spread in spectral weight in the presence of charge-spin 
separation. Event (1) (decomposition of an inmming 
particle-hole composite intd its constiluem) omus 
before (2) a d  is the only one occurring in the one- 
branch problem. The spread of weight beyond Ir,q in 
(2) involves excitations on both branches. 

weight at negative frequencies are then simply obtained by transforming the electron into a 
hole and inverting the order of steps (1) and (2). 

Retuniing to the discussion of chargrge-spin separation, versus anomaJous fermion 
diiensiofis, figure IO@) demonstrates that charge-spin sepkation is the dominant feature 
at small h and that spectral weight is mainly concentrated between u,q and upq. As the 
divergenks disappear upon incresing d; an important transfer of spectral weight far away 
from'the energies of the ejected (absorbed) particles (resp. their constituents) sets in and 
the aspects related to the anomalous ferniion dimensions become prdininent. 

This suggests the following remark on the role ,of amplitude and range of electron- 
Mectron interactions. As long as the inteiactions are local (Hubhard model) the power-law 
correctioG to correlation functions are surprisingly weak no matter what their dpl i tude is. 
h fact, the U = Hubbard model has LY = 0.125 and the influence of this exponent on the 
single-pdcle properties (not riecessarilj. the many-particle correlation fdnctions) is quite: 
hegligible. Dominant in the' dynamic chelation functions is the charge-spin separatiod, 
'which d o u n t s  to splitting a pale into a branch cut with'singularities of roughly. half thk 
original degree of divergence at its ends-a dramatic modification of the low-energy physics! 
only a finite interaction rang2 allows &e generation of really strong correlations in ap 
intricate interplay of strength ahd range; and, ultimately, a Coulomb potential V(q) - 1/q2 
will always be in the strong-coupling li&t no matter what its amplitude. In this case, strong 
modifications of the physics &e generated by the correlations, and charge-spin separation 
plays a relatively minor role. Notice, however, that, in all th& more realistic models, 
deviations from the asymptotic Luttinger-liquid spectral functions discussed here will occtif 
for finitk q and w. 

3.2. Real parts of Green functions 

Although the real parts of the Greeh functions are of  less iinmediate relevance for 
experiments, they are important in a vaiiety of applications $at use h e  interacting Luttinger 
model as a zeroth-order starting point in diagrammatic heones. h an analytic calculatioii 
is not possible in general (eltcept for the one-branch Lattinger liquid) and. for complete 
charackization, numerical procedures are required. A fairly detailed picture can also be 
composed from knowledge df the asymptotic behaviour of Re G(q, o) in the vicinity of 
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Figure 12. Energydependent density of states N ( o )  of the Luttinger model for various a. 
The inset displays the asymplotic low-fiwluency behaviour close to the P& energy. Only the 
negative fmyency part is shown. 

the points w = f u . q  where Jin G(q, U )  behaves singularly. To this purpose we use the 
Kramers4ronig relations . 

(3.30) 

where P denotes the principal value of the integral. 

(here and below, we assume the branch r = +) 
For the one-branch Luttinger liquid, equation (3.30) can be solved, and the real pmt is 

Close to a onssided power-law singularity 

p(q ,w)  - @(w - uq)lw - uqly-' 

Re G(q, w) varies like 

(3.31) 

ReG(q,o) -sgn(l - y ) s g n ( w - u q ) ~ o - u q ~ Y - ' + c o n s t .  (3.32) 
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If the spectral weight is to the other side of the divergence, say 

one obtains 
p(q ,w)  =e( -@ - vq)l - w - vqly-' 

ReG(q,o) -sgn(l -y)sgn(o+uq)lw+vqlY-'+const .  (3.33) 

P ( 4 . W )  - IO-vqlY-' 
ReG(q, w )  - sgn(1 - y )  sgn(w - uq)lw - vqly-' + const. (3.34) 

ReG(q,w) - InIw-vq[ .  (3.35) 

Finally, it is obvious from (3.32) and (3.33) that close to a divergence from both sides 

Finally, for y = 1, i.e. a step in p(q, w), the real part becomes 

For values of y < 1, the divergence will dominate, but if y increases beyond 1, one will 
find a cusp set off from zero by a finite value. The sign of the singular part changes when 
y increases beyond 1, guaranteeing a smooth evolution of ReC(q, w) with y .  

4. Derived quantities: momentum distribution and density of s t a b  

Several physical properties can be derived directly from the Green function. Most important 
are the momentum distribution function 

m 

S_m 
n(k) = -i dx e-ihGr,,(x, 0-) (4.1) 

where G,,,(x, 0-) is the time-ordered Green function, and the single-paaicle density of 
states 

The asymptotic low-energy properties of these functions for the Luttinger model have been 
discussed earlier [1,5,35,36,43]; in view of the importance, in  particular, of N(w), for 
photoemission experiments, we shall recalculate them here and present some new results. 
Moreover, we want to use the full expression (2.13) in order to ensure the correct physics 
at higher energy scales. 

We begin with n(k). Inserting the ($A&*) part of (2.13) into (4.2), n&) for spin s 
and branch r is given by 

(4.3) 

X (4.4) 
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where B(cf,B) is the beta function (GR 8.38) and lFz(a; b,c;  z )  a generalized 
hypergeometric function (GR 9.14, 1). The asymptotic behaviour given in equation (3.6) is 
apparent because I Fz(a; b, c; 0) = 1 and (4.4) then deteimines explicitly the constants C1 
and C, in (3.6). 

The density of states 

depends sensitively on the i se  of~the Gieen function (2.13) or (2.15), i.e. the treatment of 
the high-energy physics outsid; the asymptotic regime lo[ 4 0. For the Green function 
(2.15) we obtain for yu = 0 

Thii functitin increases monotonic5lly with 101 and tends towards l/n(u,,~,,)'/~ as [wI -+ 00. 
This is different from and in general higher than the freefermion density Of states I / ? U F ,  
indicating that the high-energy physics of the model has been altered by assuming constant 
velocities U" for charge and spin fluctuations. If the correct Green function (2.13) is used, 
one can take advantage of the pole in the 6rst factor and evaluate N(w)  even for finite y,, 
as 

(U: --- u:>4 

( --- :p U:) 44)] (4.7) 

An equivalent formula is contained in unpublished work by Schulz 1441. 
For low energies, the first term dominates and produces N ( o )  - lola, in agreement 

with the asymptotic results of Luther and Peschel 1361 and Suzumura [35], while for high 
energies N ( o )  tends to the freeparticle density of states I/KUF. N ( o )  from equation (4.7) 
for yo = 0 is displayed in figure 12 where we used the procedure discussed above for 
generating the U, from a. It is apparent that the spectral weight lost in the pseudogap 
close to the Fermi surface reappean in a n " u m  at finite frequency. This suggests the 
existence of another sum rule for the Luttinger model translating a conservation of the total 
spectral weight of the model in the presence of interactions. In fact, Suzumura 1351 has 
shown that 

(4.8) 

and our equation (4.7) obeys that rule. Upon close inspection, some curves in figure 12, 
in particular the one for a = 0.125, seem to violate this rule. There is, however, for small 
a another shallow minimum in N(w)  at higher energies (e.g. for cf = 0.125 at o N 3.5) 
as can be checked by examining the derivative dN(w)/dw. This minimum would not be 
visible on the scale of figure 12. 
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the derivation of equation (4.8). SuzumGa [351 explicitly uses the relations between 
the Gelocities U, and the coupliig c o n h t s  gi satisfied by the Luttinger model. Suzumura 
discaids g411 on account of the Pauli pdciple. This argument, iii fact o6ly holds for a local 
poten€ial where g+ ( p )  is independent Of p >  and'neglecting g4,l is not permitted in general 
(the Luttinger model iH not even well defined for a S ( x )  potential). bne can &-evaluate 
(4.8) in the presence of 840 and find 

(4.9) 

Only g;i(p = 0) enters since the Green function (2.13) depends, to the (iversal) 
logarithmic accu&y of equation (2.13). only on the gi (p  = 0). We have given in 
section general arguments why g411(p = 0) should vanish, implying that Suzumura's 
sum rule is generally valid for the Luttihger model. If one should imposd finite g4ii(p = 0), 
Gquation (4.9) seems to sugeest a renormalination of the chemical potential. Since (4.8) 
depends on the particular relations between velocities and coupling constants of the'httinger 
model,  it n e a  not be satisfied by any more general model having a Luttinge+qhid fixed 
point in that regime; and consequently the maximum of figure 12 need nbt appe$there. 

The physical significance of the sum rule (4.8) is more transparent @on insedng (4.2) 
and (2.10) into . .  (4.8). It @en &slates into 

i.e. the veryshort-time behaviour of the exact interacting retarded Green function BR must 
not be changed by the interactions with *pect to the dreen function of free electrons 
G f .  This enHures that the high-energy physics of the model is'tTeated correct& in G. 
More fundamentally even, GR(x = O , t  = Of) is related via (2.11) to the fermionic 
anticommutat&, and (4.8) then =ante& that no important feature of the c&onical 
transformation used to diagonalize (2.1) add~(2.6) hasbeen lost in the further course of 
calculation. Very loosely speaking one could say that (4.8) ensures GR(O, O+) to be the 
'canonically transformed GE(O,O+)'. 

We finally want to discuss the density of states of a modified Luttiinger liquid whose 
charge degrees of freedom are massless and described by the charge part of the H d t o n i a n  
(U), resp. (2.6); and thus by parameters K p ( y p )  and U,, but whose spin fluctuations are 
massive with a gap A,-for reasons that will become obvious below when experiments 
are discussed. Formally, the system has Cr = M then. Theoretically, such a situation can 
arise in a variety of models, e.g. the U < 0 Hubbard model [45], the attractive'extended 
Hubbard model [in, the Luther-Emery solution of the backscattering problem [46] as weli 
as for electrons interacting with acoustic [47] and' intramolecular phonons [48]. 

The Green f ic t ion  G(x = 0, t )  for this problem cannot be calculated exactly. The 
charge part of G is given by the charge parts of equations (2.13) or (2.15). For the spin 
part; a realistic guess or approximation has to be made. For this purpose, we borrow 
from the textbook example of a gapped many-body system, namely superconductivity, the 
diagonal parts of the Green function'matrix (1371, equation (51.30)) and transform it into 

G R (X = O , t  = 0') - G ~ ( x  = O , t  = O c )  = O  (4.10) 

(4.11) 

with & = uF(rk -kF). The {cw(t)c,+(o)) and (C,+(o)Ck(t)) pieces are clearly separated here. 
One must now multiply these pieces separately by the corresponding charge contributions 
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in (2.13) or (2.15) to obtain the correct retarded Green function. We then interchange the 
integrations over t and & and perform the one over t first with the result (up to constants) 

N ( 4  - lm G o b  - Gf + A,) I 
m 

2 1/2 

x exp ( - A [ w  - ($ + [w - (f: + A~)' /2]2Y~-'~ 
UP 

where 1Fl(a, b; z) is the confluent hypergeometric function 1381. It is clear that N(w) = 0 
for 101 < A,,. This contradicts an earlier calculation [MI, which finds a finite density of 
states in the gap and even at w = 0. We believe that the difference is due to our multiplying 
separately charge and spin in the particle and hole parts of the Green functions and building 
the total Green function out of these products, while Schulz apparently multiplies the charge 
and spin functions. 

Also interesting is the onset of N ( o )  close to A,. We find for the dominant term 

N(w)  - O(lw1- A,)(lol - A,)2yp. (4.13) 

The typical (101 -A)-'/' singularity of gapped ID quantum systems, here present in the spin 
sector, is completely wiped out by the remaining massless charge fluctuation through the 
convolution of both p a ~ &  in the density of states. Thus, in principle, the charge correlation 
exponent can be determined from the onset of N(w) near A,,. Notice that yp > 0 so that 
one expects a step function for fiee charges and a weaker singularity as correlations in 
the charge channel increase. The physical interpretation of the zero density of states for 
IwI < A< is most transparent in the U < 0 Hubbard model: the particles form bound singlet 
pairs, and such pairs must be broken in a photoemission experiment requiring a minimum 
energy A,. 

Finally the half-filled 1D Hubbard model is symmetric under a simultaneous exchange 
U + -U, p + 6. Furthermore spin-rotation invariance requires for U t 0, vu = 0, so 
that one would expect an edge discontinuity in N(w)  at the charge gap. 

5. Photoemission experiments on one-dimensional materials 

The results presented above should be directly relevant for photoemission experiments on 
quasi-ID systems thought to be describable as Luttinger liquids. There has recently been 
a series of experiments on organic and inorganic qUaSi-lD materials whose salient features 
will be summarized in the following. We do not pretend to have elaborated a theory for 
photoemission in these materials, but simply discuss to what extent they are consistent with 
a Luttinger-liquid hypothesis. 

The organic conductors and superconductors of the (?hlTsF)2X series (Bechgaard salts) 
are prime candidates in this field. They are in general metallic down to quite low 
temperature, where they undergo a spin-density wave (SDW) or superconductivity transition. 
There is evidence for important repulsive interactions and sizable anisotropy in the electronic 
properties. Moreover NMR experiments have already been analysed in a Luttinger-liquid 
picture [23,24]. 

A high-resolution photoemission experiment was recently performed on the system 
with the counterion X=P& [28] in its normal state at 50 K. The experiment had an 
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excellent energy resolution but the angular resolution was less good, so that, in principle, 
our predictions of section 3 have to be integrated over a finite k-domain in order to be 
comparable with the experiment. In this situation, one would expect, loosely speaking, to 
see the shape of the spectral weight near its onset more similar to that of N(u), figure 12, at 
least on a frequency scale u ~ A k  where Ak is the resolution, but the signal should disperse in 
a manner indicative of the angleresolved functions. The experiments could not detect any 
signature of a Fermi edge (indicative of divergent response in the angleresolved functions 
p(q, U)) .  Only a broad prominent feature near -1 eV, i.e. at the very bottom of or even 
outside the conduction band of (TMTSF)~PF~, was detected. There was no dispersion of the 
measured signal upon varying the angles. 

Similar behaviour is observed above the Peierls transition temperature in some inorganic 
qUaSi-lD charge-density wave (CDW) materials such as (TaSe&I [75,27] or &.sMoq 
125,261; only in (TaSe&I is a dispersive signal seen [27], which, however, fades away 
as it approaches the Fermi energy. On the other hand, a clear signature of a Fermi edge is 
visible in the more 2D system IT-TaS2 [49]. 

Alternative models have been discussed in the original papers. Here we shall concentrate 
on the possible (in-?)consistency with a Luttinger-liquid picture. We concentrate on the 
Bechgaard salts. 

The experiments are manifestly inconsistent with the results of sections 3 and 4 if 
one considers a values for the Luttinger liquid appropriate for e.g. the Hubbard model, 
a < 0.125. In the density of states one expects a pronounced pseudo-Fermi edge-the 
lwlU singularity will not be distinguishable from a step function in particular when thermal 
broadening is included. Moroever, angle-resolved experiments should see two dispersing 
peaks corresponding to energies u,q where the momentum transfer q onto the chain is 
varied with the angle. None of these properties are observed. 

The experiments are more consistent, however, with our results if one assumes large 
values of a in excess of unity indicative of strong and long-range interactions. In this 
case, the density of states starts off the Fermi surface with a flat tangent and gradually 
rises towards lower energies. It exhibits a maximum at finite energies whose precise 
location, however, cannot be determined within the model (it depends on the cut-off and 
therefore requires a more complete theory-r unambiguous experimental identification). 
The possibility of shift of spectral weight over significant energies is also borne out by 
our calculations, although we cannot determine whether it appears inside or outside the 
conduction band. However, an identification of the experimental maximum with the one 
in figure 12 is certainly not permitted for a variety of reasons: (i) The Luttinger-liquid 
picture is likely to become irrelevant on energy scales of the order of the (real) bandwidth 
and more complete models must be used. (ii) Quantum-chemcal calculations indicated the 
existence of molecular orbitals below the conduction band in this energy range [50]. (iii) 
Evidence for the presence of such orbitals in this energy range has also been provided in 
earlier photoemission experiments on lTF-TCNQ 1511. Still, the experiments do not show 
signatures of the spectral weight associated with the conduction band at energies smaller 
than 1 eV and apparently constrain the ground state of any more realistic theory to be of 
the large-a Luttinger-liquid type. 

Also the absence of prominent dispersive features in angle-resolved experiments is 
consistent with a large- Luttinger-liquid picture. It is obvious from figure lO(b) that no 
strong feature IS observed near u,q, rather a smooth rise in spectral weight, which renders 
the detection of the dispersing onset impossible. Moreover, at upq there is just an upward 
cusp whose experimental detectability is questionable: with a finite k-space resolution Ak, 
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p(4,  o) is integrated over a width Ak, sharp features are thus averaged over Ak and weak 
singularities may be wiped out completely if Ak is not really small. 

In the large-cu regime, spectral weight is pushed away from u,q and appears shifted 
to higher energies, typically a fraction of up/A. The evaluation of p(q. o) for the spinful 
problem is affected by the approximation involved, over this energy range. Since charge- 
spin separation is not 'important' at these high values of 01, the problem can as well be 
discussed for the spinless model, where exact results have been given. Figure 7(b)  shows 
that, for large a, so long as q 5 1 (in units of A-'), the maximum in spectral response is 
at frequencies of order w - up/A independent of q. Dispersion only sets in for 4 >> 1. 

The Luttinger liquid is a phenomenological picture. As such, its main shortcoming is 
its inability to provide a microscopic picture for the origin of the interaction constants g, 
but its principal virtue lies in the possibility to calculate all correlation functions and thus 
to tie together various experiments. Important insight into the electronic properties has 
been gained by NMR experiments [23,241. The temperature dependence of the spin-lattice 
relaxation rate T;' is governed by an exponent O~SDW = 1 - Kp (named y in Bourbonnais' 
work [23]) and can thus be. related to the exponent 01 measured in photoemission. Recent 
experiments [24] give USOW - 0.85, thus Kp - 0.15, and imply 01 N 1.25 consistent with 
the photoemission experiment. 

Another prediction is that the CDW response at 4 k ~ ,  characterized by an exponent 
01& = 2-4Kp, is stronger than CDW and SDW at 2 k ~  with exponents L Y ~ W  = CUSDW = 1 -Kp 
[9,13,21]: for Kp = 0.15, we find 01db = 1.4 > CXSDW = UCDW = 0.85. The connection 
of this prediction with the experimental situation is, however, not clear to date. Diffuse x- 
ray scattering at 4 k ~  has not been observed in the (mSF)zX compounds-but has neither 
been observed in the related series ("MlTF)zX where 4 k ~  charge localization has been 
established quite convmcingly. One might also be tempted to associate the observed room- 
temperature dimerization with the strong 4 k ~  response. However, the opposite evolution 
with temperature in the TMTSF and TMlTF series shows that the physics presumably is more 
complex 1521. 

With these caveats in mind, consistency of photoemission with a Luttinger-liquid picture 
requires to place the organic conductors of the TMTSF series in a regime of large LY > 1. 
Such values are far beyond the l i i t s  satisfied by the lr) Hubbard model [9,10,14,31] and 
also the quarter-filled extended Hubbard model [53], and would indicate the presence of 
important long-range electronic interactions. Phonons also can contribute to an enhancement 
of 01 [47]. One would thus place the "rSF compounds at the edge of a charge localization 
transition but still on the metallic side, while the interactions in the TMTTP series are stronger 
and would lead to localization. Evidence for impomt  charge localization effects has been 
produced with infrared spectroscopy on some "rSF compounds [54]. 

As a final comment, we address the apparent universality of the (absence of) spectral 
response in quasi-1D materials. While the electronic properties of the quasi-1D CDW materials 
are radically different from those of the organic superconductors, their photoemission 
properties are quite sim~lar. In particular, electmn-phonon coupling seems to be the 
dominant interaction in the CDW materials. Notice in this context that many electronic 
properties are determined by many-particle correlation functions, which depend on both 
sign and magnitude of the interactions (for some examples see below). The single-particle 
properties only depend on the interaction strength and are necessarily more symmetric. 
More importantly, we discussed at the end of the preceding section how a vanishing density 
of states over a finite energy range together with only weak singularities at onset naturally 
emerges in a 'paired Luttinger liquid' where mobile charges are described by a Luttinger 
Hamiltonian but the spins are gapped. There is ample experimental evidence for such a 
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@seudo)gap in a variety of CDW materials and its persistence deep into the normal state 
[55], although the origin is usually sought in the thermal precursor fluctuations of the 
Peierls transition [56]. The charge-spin separated version suggested above is consistent with 
experiments on some compounds (e.g. &.sMoo 3) but not on others (TaSe&I or (FA)~PF~ 
(FA stands for the organic molecule fluoranthene). There also seem to be more microscopic 
theories pointing towards such a picture [57]. 

6. Further developments and summary 

In .the preceding sections the influence of charge-spin separation and of power-law 
correlations on the single-particle spectral properties has been investigated, and the quite 
different consequences of both properties'have~ emerged. When charge-spin separation is 
dominant, the spectral response is characterized by a double-peak structure and the bulk of 
the spectral weight is concentrated between the peaks. The anomalous correlations, on the 
other hand, produce a *&fer of spectral weight to higher energies and generally weaken 
the observed divergences. In extreme cases, possibly even of experimental relevance, 
correlations may wipe out the spectral signatures of chargwpin separation. 

The single-particle response is fully described by the two velocities U, and the exponent 
a. It does not depend slrongly on the sign of the Luttinger interactions gj since a is 
symmetric in gz, and the U, are just interchanged under gi + -gi .  Many-particle correlation 
functions do depend on the sign of the interactions and it is therefore interesting to search 
for the effects of charge-spin separation there. Three density-wave 'correlation functions, 
which, in principle, can be studied by neutron scattering, &e of particular interest: 2 k ~  CDW 
and SDW and 4kF CDW. Their retarded correlation functions are detined as 

(6.1) ~R~ R ( x ,  t) = -ie(f)[oj(xt), O;(OO)] 

where the operators Oj are given in terms of the phase fields @&) and e&) by'[13] 

with two similar expressions for the x and y components [13], and 

CDW and SDW operators are products of a charge and a spin part and will therefore be 
sensitive to chargespin separation in their dynamical properties while 4kF CDW will not, 
involving solely charge degrees of freedom. The structure factor close to 2 k ~  is then given 
by 

s(2kF f q,  0) 
-1 - h @&(2kF f 49 U )  (6.3) ar 
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Equivalent expressions are obtained for the magnetic structure factor x(2k~ + q ,  w )  (here 
K, --f K;' for the x and y components of the spins) and for the 4 k ~  structure factor 
(simply replace all (KO, U,,) by another ( K p ,  up)). The exponents of the previous section are 
CQDW 12 = WDW = 2 - Kp - K, + 1 - K p  for spin-rotation invariance, and ~ k , ,  = 2 - 4Kp. 
We do not attempt an exact evaluation of these functions but will only discuss their properties 
qualitatively. The term in large parentheses in (6.4) is symmetric under separate interchange 
of x + -x and t + -1, implying independent symmetries of the structure factor under 
w --f -U and q + -4. Analyticity considerations similar to those in section 3 show that the 
structure factor vanishes for -u,q 4 w c u,q (U, < up assumed). Moreover, S(2kp+qr w )  
will exhibit power-law singularitis at 5 u , q  whose exponents can be determined by power 
counting. We find 

s (2k~ f q,  0 N *U&) - S(l0l - Uuq)(lOl - Uuq)4+Kr/z- '  (6.5) 

and 

s (2k~ f q. 0 N U p q )  - [ 101 - Upq14'z+x~-i. (6.6) 

The symmehy of the exponents in (6.5) and (6.6) is a consequence of the symmetry of 
charge and spin degrees of freedom manifest in (6.4). 

The magnetic structure factor x(2k~ + q ,  w )  is govemed by the same exponents as 
KUCF + q,  0). and 

(6.7) 

For K, = 1 and K p  < 1 there are only cusp singularities at *u,q in the structure factors. 
As K p  decreases (the interactions become more repulsive) the cusps will become more 
pronounced and, as K,, falls below 1/2 (notice in passing K, > 112 for the repulsive 
Hubbard model [9,10,14]), divergences will simultaneously appear at w = &u,q in 

will only sharpen at &uPq in the 2kF functions. 
Apparently, the many-particle correlation functions produce complementary information 

on the effective interactions close to the Fermi surface, to that provided by the single-particle 
properties. 

Not only do they depend on the sign of the interactions (K, > 1 for attraction and 
K, < 1 for repulsion) but the range of coupling constants where strong divergences 
are produced are opposite: while the singleparticle properties diverge most strongly for 
weak couplmg (or << 1, i.e. K p  - l), the many-particle properties such as the charge or 
magnetic structure factors show ther strongest divergences only at strong coupling, and by 
comparing, for K~ < 4, x(2kF + q.  w )  with s(4kF + q ,  w )  a fairly accurate picture of the 
importance of charge-spin separation could be obtained. Were it not for the tiny sample 
size, neutron scattering experiments on the Bechgaard salts would be most instructive since 
the photoemission and NMR experiments discussed above seem to locate K p  - 0.15, i.e. 
strong divergences are expected in the different structure factors. 

Apart from experimental verification, it may also be interesting to check the predictions 
of this paper by computer simulation. It is then important to choose carefully the model to 
be studied depending upon the method used. For example, in the world-line Monte Carlo 
method [58] the calculation of single-particle properties is difficult because it amounts 
to interrupting fermion world lines. WO- and four-particle correlation functions require, 
however, K, c for strong divergences; thus the Hubbard model will probably not produce 
structured results and should be avoided in favour of models with longer-range interactions. 

s ( 4 k ~  + q ,  0 2: U p q )  - e(lol - U p q ) ( l O l  - U p q ) z K p - ' .  

S(2.k~ -I- 4.0)  and X(2kF + q.0)  and at 0 = f U p q  in s(4k~ + 4, U), while the CUSP 
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The situation is opposite for algorithms evaluating dwectly the Green function [59] where 
single-particle properties are readily obtained. Here, the Hubbard model will probably 
produce the clearest results, and the predictions of section 3 should then be open to numerical 
verification. 

To summarize, we have studied in this paper the spectral properties of the single- and 
many-particle correlation functions of Luttinger liquids. We have attempted specifically 
to separate the influences of chargespin separation and power-law correlations. Charge- 
spin separation generally produces a double-singularity structure in the spectral functions at 
o = v,q. Non-universal divergences there are caused by the anomalous fermion dimensions 
as well as a shift of spectral weight to higher energies. Single-partlcle and many-particle 
functions are complementary in that chargespin separation is most apparent in the single 
particle properties at smaller interaction strength and/or range while the opposite is true 
for the two-particle correlation function. In any case, charge-spin separation can only be 
probed by angle-resolved experiments where the full dynamical correlations p ( q ,  o) are 
probed. 
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